Responses to reviewers

Summary
Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
Tracking #: BPSC-D-24-00490

Title: “Distinct computational mechanisms of uncertainty processing explain opposing exploratory
behaviors in anxiety and apathy”

We sincerely thank all reviewers for their time and thoughtful feedback on our manuscript. We
have carefully considered each comment and have made substantial revisions to address their
concerns. In this detailed response, we comprehensively explain our revisions and include
additional analyses where requested.

For clarity, we have structured this response as follows:

e Each reviewer comment is marked with an arrow () and shown in blue

Our responses follow each comment with detailed explanations
Revised text additions to the manuscript are shown in purple
All changes have been tracked in both the Main Text and Supplementary Information

We have provided extensive details and additional analyses to address each concern raised
during the review process thoroughly.

Additionally, in the HBI framework, the parameters were estimated in an unconstrained space
following normal distributions. During the model fitting with HBI, volatility, stochasticity
parameters were transformed using a sigmoid function, inverse temperature was transformed
using exponential function. Previously, we incorrectly used an exponential transformation to
transfer all parameters. We have corrected the parameter transformation (for volatility,
stochasticity) implementation to use the sigmoid function throughout our analysis consistently.
This correction aligns our reporting with the original model fitting procedure. All figures and
tables have been updated accordingly (tracked changes). Importantly, this correction did not
affect any of our statistical results or conclusions.



Reviewer 1

-1 While the study is statistically robust, the effect sizes reported are small. It is crucial to
address the clinical relevance of these findings more explicitly, particularly in terms of real-world
applicability. Specifically, could the authors discuss how these small effects translate into
meaningful behavioral or clinical outcomes, especially in neuropsychiatric populations?

We appreciate that more discussion about our effect sizes is needed to aid the readers in
interpreting our findings.

While the observed correlations (r = 0.10-0.16) may appear small based on traditional
standards, recent methodological discussions in the field of psychological research have

challenged conventional interpretations of effect sizes, particularly in individual differences

research. We believe it's important to consider our findings within this evolving context.

Revisions in the paper:

1. In this revision, we integrated these methodological considerations into an
opinion/mini-review in revised Si, Text S1.

2. We have added the following text to the last but one paragraph in Discussion (Main
Text):

“The observed effect sizes in the current study (r = 0.10-0.16) align with recent recalibrations of
effect size interpretation in individual differences research, where r = 0.10 is considered

meaningful (Gignac and Szodorai, 2016). These effects are comparable to well-established

phenomena like the effectiveness of antihistamines on allergy symptoms (r=0.11) (Funder &
Ozer, 2019). While modest in isolation, such effects on exploratory decisions can accumulate
substantially over time, potentially contributing to the maintenance of anxiety or apathetic
behaviors through persistent influence on decision-making.”

Here, we explain further:

Interpreting effect sizes in individual differences research

Recent methodological discussions have challenged conventional interpretations of effect sizes
in psychological research, particularly in the field of individual differences. Gignac and Szodorai
(Gignac & Szodorai, 2016) conducted a comprehensive meta-analysis that suggests a
recalibration of effect size interpretation:

r = 0.10: small but typical

r=0.20: medium



r = 0.30: relatively large

In light of this, our observed correlations (r = 0.1-0.16) fall within the expected and meaningful
range for this field of study. We acknowledge that these effects may appear small based on
traditional standards, but we believe they warrant careful consideration within the context of

individual differences research.

Benchmarking effect sizes

Studies by Fan, Gershman and Phelps (Fan et al., 2022) and Scholl and colleagues (Scholl et
al., 2022) found similar or even smaller effects when examining how emotions influence
decision-making.

To provide further context, we find it helpful to compare our results with well-established
psychological phenomena, as suggested by Funder and Ozer (Funder & Ozer, 2019) in their
impactful paper “Evaluating Effect Size in Psychological Research: Sense and Nonsense’.

The idea behind using benchmarks to evaluate effect size is that the magnitude of a finding can
be illuminated by comparing it with some other finding that is already well understood. Some
relevant comparisons include:

-Scarcity increases perceived value of a commodity (r = 0.12)

-People attribute failures to bad luck (r = 0.10)

-Communicators perceived as more credible are more persuasive (r = 0.10)
(Richard et al., 2003)

Additionally, clinical comparisons can provide an intuitive understanding:
-Effectiveness of antihistamines on allergy symptoms (r = 0.11)

-Pain relief from nonsteroidal anti-inflammatory drugs (r = 0.14)

(Meyer et al., 2001)

These comparisons illustrate that our effect sizes are consistent with many important and widely
accepted findings in psychology and clinical practice.

Cumulative Effects: Even small effects can have substantial real-world impact

While individual effects may appear small, we believe it's important to consider their cumulative
impact over time. As Funder and Ozer (Funder & Ozer, 2019) argued, seemingly small effects
can have substantial real-world impact when considered cumulatively.



Consider a compelling example from a large-scale study that analyzed 2 million financial
transactions across 2,000+ individuals. The researchers found that the correlation between
extraversion and holiday shopping expenditure was merely r = 0.09 (Weston et al., 2019). While
this effect size might seem negligible for a single consumer, its significance becomes evident
when considering a department store during the holiday season with thousands of shoppers.

In our study, this manifests in several ways:

Single Decision: While the effect on exploration (r = 0.13) may seem small for a single decision,
its impact compounds over time.

Daily Impact: Approximately 20 decisions could be affected.
Monthly Impact: Around 600 decisions might be influenced.

Annual Impact: Over 7000 decisions could be shaped by these computational differences

Clinical significance in neuropsychiatric populations

While the extension of the current findings to clinical populations is the subject of ongoing work
in our lab, we believe the potential clinical significance of these effects becomes evident when
considering how they might impact daily functioning in neuropsychiatric populations. For
example, anxiety is associated with heightened environmental scanning (Charpentier et al.,
2022). This could create a cycle where overestimating volatility leads to increased
environmental scanning and strategy changes, and ultimately contribute to the maintenance of
anxiety symptoms. In contrast, for individuals with apathy: A subtle reduction in exploration
might result in fewer novel experiences, reduced opportunity detection, and gradual withdrawal
(Fahed & Steffens, 2021), potentially reinforcing apathetic symptoms.

The Clinical significance of small effects: population Impact and service Implications

Recent research (Carey et al., 2023) on youth mental health during the COVID-19 pandemic
illustrates how small statistical effects can translate into substantial clinical outcomes. A
seemingly modest effect size of d = 0.14 in depression scores led to 160,870 additional cases of
depression in a population of 10 million youth, resulting in approximately 64,000 new referrals to
mental health services and a 16% increase in clinical caseload.

Larger sample size are necessary to provide more precise estimates and meaningful clinical
implications

As Schonbrodt and Perugini (Schénbrodt & Perugini, 2013) demonstrated through Monte Carlo
simulations, a sample size approaching 250 is typically needed for stable effect size estimates.
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This aligns with the growing recognition that many published studies, particularly in fields like
psychology and neuroscience, are underpowered.

Feng et al. (Feng et al., 2022) provided compelling evidence for this in their meta-analysis of
brain imaging studies. They found that published brain imaging measures accounted for an
average of only 8% of the variance in affective symptoms, with a wide confidence interval
(1.6%—-23%). Importantly, they noted that this average effect size was likely inflated due to the
prevalence of small sample sizes in the field. And their findings support the need for large-
sample clinical studies to robustly capture systematic variance of brain-affective symptom
relationships

These findings underscore the need for large-sample clinical studies, particularly in fields like
neuropsychiatric research. Larger samples not only provide more precise effect size estimates
but also allow for the detection of smaller, yet potentially clinically relevant effects. Moreover,
they enable more robust statistical modeling to capture the complex relationships between brain
function and behavior.

Future Directions

To further establish clinical utility, we propose:

Longitudinal studies: Track how computational parameters predict symptom progression,
examine treatment response patterns, and assess functional outcomes over time.

Clinical validation: Replicate findings in clinical populations, compare with standard clinical
measures, and evaluate sensitivity to treatment interventions.

In conclusion, while we acknowledge that the effect sizes in our study may appear small at first
glance, we respectfully suggest that their clinical relevance becomes apparent when
considering cumulative effects, population-level impact, and the specific context of
neuropsychiatric research. We believe these findings are robust and valid since it's comparable
with previous established psychological findings.

Responses:
We agree with the reviewer that the translation of our findings to clinical populations remains to

be established. In the revised manuscript, we have addressed this limitation in the last
paragraph in Discussion.

Revisions in the paper:




“While our findings provide valuable insights into uncertainty processing mechanisms, we
acknowledge that our sample may not fully represent individuals with clinical levels of anxiety
and apathy, potentially limiting generalizability to diagnosed populations. Future research with
clinical samples will be crucial to validate and extend these findings, strengthening their
translational impact.”

-3 The manuscript utilizes multiple computational models, which might be difficult for non-
specialist readers to follow. It would be helpful if the authors could provide a clearer explanation
of how the Kalman filter and Hidden Markov Model results complement each other in the main
text, possibly reducing the reliance on the supplementary methods section.

Responses:

Thank you for this suggestion, it is indeed important to clarify how the Kalman filter and Hidden
Markov Model results complement each other.

Kalman filter model is a process model, while the Hidden markov model is a latent state model.

Process models, such as reinforcement learning models, or the Kalman Filter model we use
here, seek to explain the algorithm that a decision-maker uses when making choices
Specifically, the Kalman Filter model, estimates how individuals weigh sources of
noise/uncertainty in updating values and making choices. Latent state models, in contrast, are
designed to infer the underlying states that make certain choice patterns more or less likely by
learning the statistical structure of choice sequences. The HMM we use is a latent state model
that identifies trial-by-trial differences in states of exploration and exploitation. As we have
previously demonstrated (C. S. Chen et al., 2021; Ebitz et al., 01/2018, 2019; Kaske et al.,
2022), combining these two kinds of models allows us to examine individual differences in the
process of decision making (how fast do participants adapt their behavior? how sensitive is that
adaptation to forms of noise?) and the underlying states that constrain the kinds of choices
people make (exploratory choices or exploitative choices).

Revisions in the paper:
1.We have added the following paragraph in the Method’s section

Complementary computational approaches: process model and latent space model

To comprehensively characterize decision-making under uncertainty, we employed two
complementary computational approaches: a Kalman filter process model capturing the
individual differences in uncertainty processing and learning, and a Hidden Markov Model
revealing the trial-by-trial differences in states of exploration and exploitation across individuals.
These models provide distinct but complementary insights (more details see Text S2).
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2. We added Sl Text S2 to give more details.

Though we tried to reduce the reliance on the supplementary methods section, due to the word
limits in BPCNNI (4000 words) and other additions to the Discussion in response to reviewers,
we moved the explanations about process and latent space model into Text S2.

Reviewer 2:
1. Conceptual clarity

—>Anxiety and apathy are defined primarily through behavioral tendencies in response to
uncertainty, but the theoretical link between these affective states and their computational
correlates (volatility and stochasticity) could be clarified. For instance, explain more fully why
apathy is conceptualized as an "overweighting" of stochasticity rather than as an absence of
perceived control. This task does not allow for control of the environment since participants'
actions do not change the reward probabilities (e.g.; in many cases all three options might have

a low reward probability so participants might "feel stuck" even when exploring).

Responses:

We appreciate your insightful comment that highlights our need to clarify the theoretical

relationship between perceived control and computational parameters.

The weighting of stochasticity (relative to volatility) is indeed how perceived control is formalized
in the computation model. While perceived control is a subjective experience that would require
self-report to quantify, whether subjects respond to noise in the environment as if it were
learnable or random provides objective evidence of the degree to which participants believe
they can exert control over their outcomes. As the reviewer observes, in this task, that control is
exercised by modifying choices, rather than modifying the environment. Since the absence of
perceived control is indeed a crucial aspect of apathy, we hypothesized that apathy would be
associated with an overweighting of stochasticity.

—>More specifically, this sentence could be clarified a bit more: "Apathy, characterized by a lack
of motivation and goal-directed behavior (4, 5), is an affective state associated with imprecise
beliefs about action outcomes (6) and a tendency to persist with previous choices rather than
explore (7). This suggests that apathetic individuals may view outcomes as primarily stochastic,

attributing events more to chance than controllable variables"



To us this doesn't follow trivially from imprecise beliefs and tendency to persist with previous

choice. These links need to be explained theoretically.

Responses:

We agree that the connection between apathy, imprecise beliefs, persistence with previous
choices, and viewing outcomes as stochastic needs a more thorough theoretical explanation in

the manuscript.

Revisions in the paper:

We rewrote the paragraph (3rd paragraph in Introduction) as:

“Apathy, characterized by a lack of motivation and goal-directed behavior (4, 5), is an affective
state associated with imprecise beliefs about action outcomes (6) and a tendency to persist with
previous choices rather than explore (7). These features are mechanistically linked: imprecise
outcome beliefs increase uncertainty about new actions, potentially leading individuals to
choose familiar options. This computational bias self-reinforces as reduced engagement limits
action-outcome learning and restricted exploration prevents exposure to diverse outcomes.
Building on these observations, we hypothesize that apathetic individuals may perceive
outcomes as primarily stochastic rather than controllable, potentially perpetuating a cycle of

reduced exploration and helplessness (8)"



2. Participants and scores
—>How was the sample size determined?

Revisions in the paper:

We apologize for not providing more justification for our sample size. We have added these
details to the Methods section

“Sample size was determined through a priori power analysis. To detect correlations of r = 0.1
(typical for individual differences research, see Text S1) with 80% power at a = 0.05, we
required a minimum sample of 782 participants. We recruited 1500 participants to account for
expected exclusions based on previous large-sample online studies (Fan et al., 2022; Scholl et
al., 2022) and our own pilot work, expecting to achieve a sample of between 900-1100
participants, thus allowing for a buffer above the minimum sample size. Our final sample of

1001 participants provided 98% power to detectr=0.1.”
To explain further:

Larger sample sizes provide more precise estimates and enable meaningful clinical implications

As Schonbrodt and Perugini (Schénbrodt & Perugini, 2013) demonstrated through Monte Carlo
simulations, a sample size approaching 250 is typically needed for stable effect size estimates.
This aligns with the growing recognition that many published studies are underpowered. The
current incentive structure in academia often rewards statistically significant results, which can
lead to p-hacking and the inflation of small effect sizes. However, a more robust approach would
be to incentivize the collection of data from large samples and the honest reporting of effect
sizes, even when they are small (Funder & Ozer, 2019). This shift is crucial because smaller
effect sizes (e.g., 0.1-0.2), when estimated from larger samples, are more likely to reflect

true population parameters.

Feng et al. (Feng et al., 2022) provided compelling evidence for this in their meta-analysis of
brain imaging studies. They found that published brain imaging measures accounted for an
average of only 8% of the variance in affective symptoms, with a wide confidence interval
(1.6%—-23%). Importantly, they noted that this average effect size was likely inflated due to the
prevalence of small sample sizes in the field. And their findings support the need for large-
sample clinical studies to capture systematic variance of brain-affective symptom relationships

robustly.



These findings underscore the need for large-sample clinical studies, particularly in fields like
neuropsychiatric research. Larger samples not only provide more precise effect size
estimates but also allow for the detection of smaller yet potentially clinically relevant

effects.

—>Please also specify the exclusion criteria a bit more since about a third of the participants

were excluded. Was this due to many participants not completing the task?

Revisions in the paper:

We have added these details to the Methods section

“We recruited a sample of 1512 participants via Prolific (Prolific. co); exclusion criteria included
current or history of neurological and psychiatric disorders. Participants were excluded if they
did not complete all questionnaires (3.57% of initial sample) or they did not complete the bandit
task (30.22% of initial sample) (TableS1). 1001 participants completed all questionnaires and
the bandit task (age range 18-54, mean + SD = 28.446 + 10.354 years; gender, 493 female). All

participants were compensated for their time in accordance with minimum wage.”

Table S1. Detailed exclusion criteria table:

Exclusion criterion Number excluded | % of initial sample
Incomplete questionnaires | 54 3.57%

Incomplete task data 457 30.22%

Total excluded 511 33.8%

Final sample 1001 66.2%

Note: Some participants met multiple exclusion criteria. Numbers represent first criterion met in

sequential screening.

—>Please also mention straightaway in the abstract and intro that this is a non-clinical sample.

Responses:
Thank you for this suggestion. In the revised manuscript, we mentioned that our sample is a

non-clinical population.

Revisions in the paper:
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1. Abstract, 2™ paragraph

“Methods

Participants (N = 1001, non-clinical sample) completed a restless three-armed bandit task that

was analyzed using both latent state and process models. ”

2. Introduction, last paragraph

“To address these questions, we recruited 1001 participants from a non-clinical population with

anxiety and apathy measurement.”

3. HMM modelling

Revisions in the paper:

We appreciate your close reading required for such detailed comments and suggestions about
HMM. We agree the original manuscript did not provide enough information to clearly describe
how the data was fitted by the HMM. So we expanded our Method S2. Hidden Markov Model

and added substantial details.
Below we provided more details to address each points raised by you.

->The states in the HMM model were defined as exploit and explore. Were these states inferred

in a data driven way? If so, why are they labelled as such?

Responses:

We apologize for the misunderstanding. Following extensive previous work (C. S. Chen et al.,
2021; Ebitz et al., 01/2018, 2019, 2020), we employed a HMM model with a designed structure
that categorizes trials into states according to whether behavior is random or persistent, which
we call exploration and exploitation, respectively. The random and persistent states captured by
the model have been previously validated as reflecting behavioral patterns characteristic of the
normative definitions of exploration as being reward-independent, whose purpose is learning
about rewards, and exploitation as reward-driven. The emissions model for the explore state
was the maximume-entropy distribution for a categorical variable, a uniform distribution:

p(z; = explore) = Ni
k

Where N is the number of stimuli that were presented (i.e. N = 3). tis the trial number.
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Because exploitation involves repeated sampling of each option, exploit states only permitted

choice emissions that matched one option. That is:
p(z; = exploit, k =i) =1
p(z; = exploit;, k #i) =1

This labeling is consistent with the normative understanding of exploration as sampling from all
options with equal probability, and exploitation as repeatedly sampling a preferred option.

->If HMM was fit to behavioral data sequences (choices of bandit A,B or C) then we should get

a stochastic strategy in each latent state (percentage of time player chooses bandit A, B or C).

Responses:
The HMM was indeed fit to behavioral data sequences (choices of bandit A, B, or C). However,

as explained above, our model structure constrained the emission probabilities for each state:
In the explore state, the probability of choosing each bandit was equal (1/3 for each).

In each exploit state, the probability of choosing the corresponding bandit was 1, and 0 for the
others.

These constraints were imposed to clearly differentiate between exploratory and exploitative
behavior, based on theoretical considerations and previous research (C. S. Chen et al., 2021;
Ebitz et al., 01/2018, 2019, 2020).

We also addressed this point in Method S2. Hidden Markov Model

- After fitting the HMM, is it possible that the researchers interpret one of the inferred states as
"explore" if it shows patterns associated with exploration, such as higher rates of switching or
responses to changes in reward structure? This inference is not automatic then; it relies on
manual labeling post-fitting based on the statistical properties of the actions within each hidden
state. For example, states showing frequent switching or less adherence to previously rewarded
options might be labeled as "explore," whereas states with consistent choices or lower switching

rates could be labeled as "exploit."

Responses:

Again we apologize for the misunderstanding, which was due to a lack of clarify in the
manuscript, which we have addressed above and in the manuscript by further explaining the
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pre-structured nature of the HMM. The trials were not labeled manually post-hock, but
automatically according to our predefined state labels.

—>For greater clarity and accuracy, the paper could improve by detailing the criteria used to
label these states and discussing the limitations of using HMMs in this manner for defining
specific cognitive states.

Also, please provide more information in the S| how the HMM was fitted.

Revisions in the paper:

We have addressed this in the manuscript, see Method S2. Hidden Markov Model

4. Distinguishability of the methodological approaches

One strength of the manuscript is that the authors use various methodological approaches to
understand this large dataset. They write "The HMM state-model of exploration-exploitation and
the Kalman filter process model of uncertainty estimation represent complementary ways of
understanding adaptive behavior that our mediation results suggest are intrinsically related.”
Overall, it is quite difficult to understand throughout the text how independent these methods are

by design.

—>First, it would be good to theoretically specify upfront potential relationships (and das

interdependence).

Revisions in the paper:

We have clarified in the manuscript how the Kalman filter and Hidden Markov Model
approaches complement each other.

1. We have added one more section in Methods:
“Complementary computational approaches: process model and latent space model

To comprehensively characterize decision-making under uncertainty, we employed two
complementary computational approaches: a Kalman filter process model capturing the
individual differences on how to learn and process uncertainty, and a Hidden Markov Model
revealing the trial-by-trial differences in exploration and exploitation across individuals. These

models provide distinct but complementary insights (more details see Text S2)”

13



2. Due to the word limits in BP:CNNI (4000 words in main body of text), we had detailed

explanations about process and latent space model in Text S2.

3. And to avoid any confusion, we revised the original text “The HMM state-model of
exploration-exploitation and the Kalman filter process model of uncertainty estimation represent
complementary ways of understanding adaptive behavior that our mediation results suggest are
intrinsically related.”

The revised version:
“The HMM state-model of exploration-exploitation and the Kalman filter process model of

uncertainty estimation represent complementary ways of understanding adaptive behaviors (see
Text S2).”
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->Second, the authors compare a series of metrics to apathy and anxiety scores but they to not

show how these metrics are empirically related to each other.

Responses:

Thank you for this valuable suggestion about showing the relationships between different
metrics. We have now added a new Table in Sl, Table S9. Volatility, stochasticity and their

correlations with HMM indices, which systematically examines these relationships.

Revisions in the paper:

See Table S9. Volatility, stochasticity and their correlations with HMM indices

P(explore)- P(exploit)- P(explore>exploit)  P(exploit->explore)
HMM HMM
Volatility 0.151*** -0.151*** -0.152*** -0.056
Stochasticity -0.147** 0.147** 0.112*** 0.030

(we report correlation coefficients here)
** P<0.01, ***P<0.001
all significant P-values reported here survive FDR correction.

(Original Benjamini & Hochberg FDR procedure, q<0.05)
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Responses:
While we agree that optimality (and distance from optimality) are important aspects of behavior,

we were specifically interested in examining how decision-making strategies differ in ways
orthogonal to optimality. Our task was specifically designed to allow for a range of viable
behavioral strategies that can (and do) achieve similar performance levels, and there is no
closed-form (or easily specified) solution for an optimal strategy that we know of. This design

feature is important because:

1. In real-world decision-making under uncertainty, there often isn’t a single “optimal”
strategy, but rather multiple strategies that can be equally effective depending on context
and individual preferences.

2. Ourresearch focus is not on how participants deviate from optimal behavior, but rather
on understanding individual differences in computational strategies and their relationship
with neuropsychiatric symptoms.

3. Previous studies using similar paradigms (Chakroun et al., 2020; C. S. Chen et al., 2021;
Fan et al., 2022; Kaske et al., 2022) have demonstrated that different combinations of
exploration-exploitation strategies can lead to comparable reward rates, making it

difficult and potentially misleading to define a single optimal benchmark.
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6. Various methods improvements

->While the paper applies FDR correction, it would be helpful to specify the correction method in

greater detail and why it was chosen over others.

Responses:

Thank you for suggesting more detail about our multiple comparison correction approach. We
used the Benjamini-Hochberg False Discovery Rate (FDR) procedure with q = 0.05 for the

following reasons:
Appropriateness for current study
1. Multiple correlations testing related hypotheses

2. Interest in discovering true effects while controlling false positives (Benjamini & Hochberg,
1995)

3. Maintenance of reasonable statistical power (Riffenburgh, 2014)

Advantages over alternative methods

1. Better suited for correlated tests than Bonferroni correction (Glickman et al., 2014)
2. Balances Type | and Type Il errors effectively (Storey & Tibshirani, 2003).

Revisions in the paper:

Due to word limits (4000 words) in main text, we expanded FDR correction in Method S13 as

follows:

“The Benjamini-Hochberg False Discovery Rate (FDR) procedure (Benjamini & Hochberg,
1995) with g = 0.05 was chosen for our study due to its superior performance in managing
multiple comparisons while maintaining statistical power (Riffenburgh, 2014). This method is
particularly well-suited for our research, which involves multiple correlations testing related
hypotheses. The FDR procedure effectively balances the need to discover true effects while
controlling false positives, making it more appropriate than traditional family-wise error rate
controls such as the Bonferroni correction (Storey & Tibshirani, 2003). Unlike the Bonferroni
method, which can be overly conservative and lead to an increased risk of Type Il errors (false
negatives), the FDR approach offers a better control of false discoveries (Glickman et al., 2014).

Furthermore, by setting g = 0.05, we ensure that the expected proportion of false discoveries
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among all rejected null hypotheses is controlled at 5%, providing a reasonable balance between

identifying true effects and limiting erroneous conclusions.”

—>Moreover, given the large number of correlations, is there a reason why effect sizes (e.qg.,
reporting standardized regression coefficients) were not reported? It might offer insight into the

practical significance of findings.

Responses:

Thank you for your attention to our effect size reporting. We would like to clarify that our
analyses are primarily correlational in nature, and we have reported correlation coefficients (r)
throughout the paper, which are themselves standardized effect size measures (Nakagawa &
Cuthill, 2007). These r-values directly indicate both the magnitude and direction of relationships
between our variables of interest, representing effect sizes on a standardized scale from -1 to
+1. Since our analyses focus on bivariate relationships, the correlation coefficient (r) is
mathematically equivalent to the standardized regression coefficient (B) in simple regression
with a single predictor (P. Y. Chen & Popovich, 2002). To enhance the interpretability of these
effect sizes, we have now added practical interpretations of effect magnitudes; please see Text

S1, which aims to address all effect size and sample size-related issues.
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->The Kalman filter model was selected as the optimal model for describing participant
behaviors. A brief justification as to what sets it apart from the other models and why this one

was best would be helpful.

Responses:

Thank you for this question about model selection. We have detailed our model comparison and

selection process in the Methods section, Model fitting and comparison, and Supplement

Method S6, Table S5, where we report that the Kalman filter model was selected based on:

(1) Protected exceedance probability (PXP = 1); (2) Lower BIC value (364039.334) compared to
alternative models: RW1: 440529.648; RW2: 444689.509; VKF: 398548.485. These quantitative

metrics demonstrate the Kalman filter model’s superior fit to participant behavior.

(2) The Kalman filter’s formulation also aligns well with theories of how individuals might perform
inference and learning under uncertainty, making it particularly suitable for our study of affective
influences on these processes. And the KF model has the ability to dissociate uncertainty, which
allows us to separately estimate volatility (process noise variance) and stochasticity
(observation noise variance). This distinction is crucial for our research questions about how
anxiety and apathy influence perceptions of different types of uncertainty. While the RW1
(Rescorla-wagner model with general learning rate) and RW2 (with positive and negative
learning rate) only quantify prediction errors through fixed learning rates, which did not
incorporate the process noise and observation noise into the learning rate and value updating,

thus they cannot separate different sources of uncertainty.

Revisions in the paper:

Based on your suggestions, we expanded our Supplement Method S6, adding:

“The better model performance further confirmed that the Kalman filter’s formulation aligns well
with theories of how the individuals might perform inference and learning under uncertainty,
making it particularly suitable for our study of affective influences on these processes. And the
KF model has the ability to dissociate uncertainty, which allows us to separately estimate
volatility (process noise variance) and stochasticity (observation noise variance). This distinction

is crucial for our research questions about how anxiety and apathy influence perceptions of
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different types of uncertainty”

—>Also, while parameter recovery was performed, we could envisage also to perform model
recovery (simulate behavioral data from model, fit various models to simulated data and see

whether we recover the same model)?

Responses:
To check for model recovery, four datasets with nSubjects = 50 and nTrials = 300 each were

simulated, based on the Kalman filter model, the volatile Kalman filter model, the Rescorla-
wagner model, and the Rescorla-wagner model with two learning rates. Each simulated subject
was again fitted using all models and compared with BIC (Bayesian Information Criterion)-based

goodness-of-fit.

The figure below shows the confusion matrices. The Kalman filter model showed good
identifiability with a 96% successful recovery rate, there was very little confusion with VKF
(0.04%). The volatile Kalman filter was recovered in 44% of cases, suggesting that while its
unique features can be identified, there is some overlap with the standard Kalman filter model

(56%). This is theoretically sensible given that VKF is an extension of KF.

The Rescorla-Wagner model demonstrated excellent identifiability with a 96% successful
recovery rate. The two-learning-rate Rescorla-Wagner model showed poor recovery (0.04%),
suggesting that its additional complexity might not provide sufficiently distinguishable behavioral

patterns from the simpler RW model in our task context.

confusion matrix
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- A potentially significant problem in the analysis performed on page 12 is the artificial
categorization of participants into "high" and "low" groups based on their scores on continuous
scales (apathy and anxiety). This can have several drawbacks such as : a) Loss of information:
By converting continuous data into categorical data, we lose the nuanced information contained
in the original scores. This can reduce statistical power and the ability to detect true
relationships. b) Arbitrary cutoffs: Using the top and bottom 25% as cutoffs is arbitrary. There's
no inherent reason why these particular thresholds are meaningful, and different cutoffs could
lead to different results. A careful justification of why the authors have chosen to dichotomise
and why they have chosen these particular thresholds would be needed.

Responses:

We appreciate your concerns about dichotomizing continuous variables. Our primary analyses
appropriately treat anxiety and apathy as continuous measures, with all key findings
based on correlational analyses using the full range of scores. The categorical analyses
(top/bottom 25%) were included only to aid visualization and interpretation of
computational differences, provide concrete examples for clinical audiences, and
demonstrate robustness of effects at different symptom levels.

To ensure our findings were not dependent on arbitrary cutoffs, we also validated our results

using a standard deviation approach (+1SD from mean):

High anxiety (n=186) vs Low anxiety (n=176)

High apathy (n=172) vs Low apathy (n=142)

measurements high vs. low apathy high vs. low anxiety
volatility t=-2.803, p=0.005 t=2.377, p=0.017
stochasticity t= 2.785, p=0.005 t=-2.522, p=0.012

We agree that continuous analyses are more appropriate for our primary conclusions,

and we have moved the categorical analyses to the Supplementary Information (SI, Text

S3). We kept the violin plots just for visualization purposes.
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Revisions in the paper:

1. In the revised manuscript, we maintain primary analyses using continuous measures
and added the figure to show the results (Figure 3C, FigureS6), we kept the high/low
apathy/anxiety plots just for visualization. And we removed categorical analyses from the
main text, organize them into Table S6 (top/bottom 25%) and Text S3 (1SD from the
mean value).

2. Accordingly, we revised figure caption for and added note at the end of figure
“Note: Violin plots in panels D and E are provided for visualization purposes only. For
details on the grouping methodology and statistical analyses, please refer to Table S6

and Supplementary Text S3.”
->In Figure S2 it is not quite clear what the three different plots are showing.

Also, why are there a few quite substantial outliers in the third plot?

Response:

Thank you for raising this question about the apparent extreme values in Figure S3 (originally
Figure S2). Figure S3 shows the parameter estimation (volatility, stochasticity, inverse
temperature) from the split-half reliability analysis. The split-half reliability analysis involved
fitting our model separately to each participant’s first and last 150 trials. For parameter
transformation, we employed the Hierarchical Bayesian Inference (HBI) framework, which
typically assumes distributed priors for all free parameters. Following the approach of Piray &
Daw (2020), we applied an exponential transformation (exp(x)) as the previous study used for
the inverse temperature (Piray & Daw, 2020). This exponential transformation explains why the
beta values appear extreme in the visualization. For example, beta estimates of 5 and 6
become 148.41 and 403.43 after transformation. However, it's important to note that the

underlying parameter estimates (before transformation) for beta remain typically distributed.
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We have replaced Figure S3 with the raw parameter estimates from the model to better

illustrate the reliability of our measurements.
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7. Minor comments on intro and discussion
—In the intro, the authors nicely mention two hypotheses. They could directly mention which

one of those is supported by the data.

Responses and revisions in the paper:

Thank you for pointing out this opportunity to improve the clarity of our manuscript. Due to the
word limits in the Main Text (4000 words), we added a very brief sentence at the end of the
introduction:

“Our findings support the first hypothesis, revealing distinct behavioral patterns and

computational mechanisms in apathetic and anxious individuals when faced with uncertainty.”

- In the discussion, the authors could expand a bit on the group of participants in which both
apathy and anxiety scores are high/low versus those in which they differ.

Response and Results:

Our analyses found no significant differences in volatility/stochasticity estimation or exploration
behavior between individuals with both high anxiety and high apathy (N=63) and individuals with
both low anxiety and low apathy (N=54) (we grouped participants by 1SD criterion) (all p>0.360)

measures stats

(H anxiety & apathy vs L anxiety & apathy)

volatility t=-0.222, p=0.824
stochasticity t=-0.026,p=0.978
P(explore) t=-0.906, p=0.366

This pattern aligns with our main findings about the distinct computational mechanisms of

anxiety and apathy.
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Reviewer 3:

Responses:
Thanks for your question!

1.1 We applied several data checks on the questionnaire and task data.

We used attention checks including checking the consistency of forward and reverse scored
survey responses and the face validity of direct questioning, for instance the question “answer
with the color of grass”. Participants also had to meet a score threshold of 42% and an

exploration threshold of 2 unique selections during the 25 practice bandit trials.

1.2 Thanks for bringing up this paper! Following the recommendations of Zorowitz et

al.(Zorowitz et al., 2023), we have double checked for our questionnaire data, see details below:

Revised inter-item standard deviation (ISD) analysis

While we acknowledge the importance of data screening, as Zorowitz et al. (2023) highlighted,
we have carefully adapted these methods for the GAD-7 and AMI, considering its unique
characteristics as a brief clinical measure. For example, the split-half reliability is not quite useful

for GAD-7 scale since it only has 7 items.

For the GAD-7 and AMI scores, we recognize that consistent scores across items may
reflect valid symptom presentations. For example, if an individual indeed does not feel
anxious at all over the last two weeks, they will have a 0 score for every single item. The 4-point
response scale (0-3) limits the possible response patterns. The short length of the scale also
makes some traditional quality metrics (like split-half reliability) less applicable.

Therefore, we modified our quality-checking approach to:

(1) Only flag response patterns that show implausible alternations (e.g., in GAD-7, extreme

oscillations between “not at all” and “nearly every day” 0-3-0-3-0-3-0, or 3-0-3-0-3-0-3)

(2) Consider the overall pattern rather than just statistical variation

Our adapted screening procedure includes:

Step 1. Calculating the inter-item standard deviation (ISD)
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Calculating the standard deviation of responses across all 7 items (GAD7), 18 items for AMI for
each participant (Of note: low ISD is not considered problematic as it may represent consistent

anxiety/apathy levels)

Step 2. Detecting the extreme alternation pattern:

Examining consecutive item responses for extreme jumps

Calculating the absolute differences between adjacent responses

Counting the proportion of extreme jumps (differences = 3 points)

Step 3. Flagging Criteria: a response pattern is flagged as suspicious only when BOTH

conditions are met

ISD > 2 (very high response variation) & Extreme alternations > 0.6 (60% of responses show

extreme jumps)

This more fine-grained approach helps maintain data quality while respecting the clinical nature
of the GAD-7 and AMI measures. We found that 0% of responses showed potentially

problematic patterns.

Revisions in the paper

In SI, we added Method S14

Method S14. Data quality check

We have attention checks including checking the consistency of forward and reverse scored

survey responses and the face validity of direct questioning including “answer with the color of
grass”. Participants must also meet a score threshold of 42% and an exploration threshold of 2

unique selections during the 25 practice bandit trials.

Moreover, we implemented a three-step screening procedure to ensure data quality in our

questionnaire responses (Zorowitz et al., 2023). First, we calculated the inter-item standard
deviation (ISD) across all items for each participant (7 items for GAD-7 and 18 items for AMI),

noting that low ISD values were not considered problematic as they might reflect genuinely
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consistent anxiety or apathy levels (e.g., not anxious or apathetic at all). Second, we detected
extreme alternation patterns by examining consecutive item responses (e.g., 3-0-3-0-3-0),
calculating absolute differences between adjacent responses, and determining the proportion of
extreme jumps (defined as differences = 3 points). Finally, we established flagging criteria
where responses were only considered suspicious if they met both conditions: an ISD > 2
(indicating very high response variation) AND extreme alternations in more than 60% of
responses. Using this fine-grained approach to maintain data quality while respecting the clinical
nature of the GAD-7 and AMI measures, we found that 0% of responses showed potentially

problematic patterns.

—>2. The AMI scores are quite high - well into the clinical range - particularly for emotional and
behavioral apathy. Symptom scores tend to be somewhat elevated in online (vs. normative)

samples but this is particularly elevated, which raises concerns about the validity of this data.

Thank you for raising this concern, which results from a simple misunderstanding. For the Table
S2 (originally Table S1), which is likely the source of the reviewer’s observation, we presented
total scores rather than subscale means, which we believe the reviewer likely assumed. In fact
the AMI scores are well within the range found in prior studies and below the suggested clinical
thresholds.

To clarify we added another table as follows:

Table S2b. Descriptive statistics for questionnaires (mean score for GAD-7 and mean

score for AMI and its subscales)

GAD-7 Apathy Apathy- Apathy- Apathy-

BA SM ES
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Mean 1.02 1.69 1.75 2.12 1.21

SD 0.79 0.52 0.84 0.80 0.70

Furthermore, we compared our AMI mean score with previous findings

1. Petitet, P., Scholl, J., Attaallah, B., Drew, D., Manohar, S., & Husain, M. (2021). The relationship
between apathy and impulsivity in large population samples. Scientific Reports, 11(1),
4830.(Petitet et al., 2021)

Table 1 Demographics characteristics.

From: The relationship between apathy and impulsivity in large population samples

Dataset F/M Age AES AMI BIS-11 UPPS-P
1. Gillan et al. £ 823/590 33.0(10.8) 31.5(8.2) - 61.1(11.2) -
2. Rouault et al. # 257/240 35.6 (10.6) 323(9.7) - 58.3(12.2) -
3. Patzelt et al. £ 377/461 36.1(10.3) 32.5(9.9) - 57.1(124) 111 (26)
4. Seow and Gillan £ 228/209 35.3 (10.3) 30.4 (8.8) - 56.9 (12.6) -
5. Online dataset 195/194 (5) 28.0 (6.0) - 1.72 (0.52) 60.4 (9.8) -
6. Laboratory dataset 89/87 24.8 (4.3) - 1.33 (0.41) 61.9 (10.8) -

The table shows the number of females (F) and males (M) included in each study (“Prefer not to say” in parenthesis). Group mean total scores (standard

deviation in parenthesis) are shown for each questionnaire included in a dataset.

Our sample’s AMI score vs their online dataset’ AMI
t=-0.888, p =0.374

2. Norbury, A., Hauser, T. U., Fleming, S. M., Dolan, R. J., & Huys, Q. J. (2024). Different
components of cognitive-behavioral therapy affect specific cognitive mechanisms. Science
Advances, 10(13), eadk3222. (Norbury et al., 2024)Table 1

Our sample’s AMI score vs their online datasets’ AMI

Published AMI (Norbury et al., 2024) Our sample AMI vs. published AMI
N=100, mean(SD) = 1.8(0.8) t=-1.317, p=0.187
N=208, mean(SD) = 1.6(0.8) t=1.59, p=0.110
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In summary, our AMI score fall within the normal range.
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Responses:

Thank you for highlighting this important concern about the parameter recovery values. We
acknowledge that our previous recovery rates were low. In response, we have conducted a new
parameter recovery analysis that strictly follows the standard procedure described in PLOS
Computational Biology papers (page 21/26) and implements the official code for the original
Kalman Filter model shared by Piray & Daw (Piray & Daw, 2020) on GitHub
(https://github.com/payampiray/piray _daw 2020 ploscb). We modified the simulation process

according to our specific task parameters and Kalman filter function.

“Recovery analysis of parameters
For this analysis, data were generated based on the binary VKF (Eqs 14-19). In particular, the

observation on trial t, o;, was randomly drawn based on the sigmoid—
transformation of m;-;.

The choice data were also generated randomly by applying the sofimax as the response model

with parameter p. Similar to experiment 1, for each artificial subject, we assumed 4 sequences

of observations and actions (i.e. 4 cues) with 120 trials. These values were used as the group
parameters: L = 0.2, v0 =5, o = 1, and p = 1. For generating synthetic datasets for simulations,

the parameters of the group of subjects (50 subjects) assigned to each model were drawn from a normal
distribution with the standard deviation of 0.5.”

Following this standard procedure, we conducted parameter recovery analyses using synthetic
data generated from the Kalman Filter model (Eqgs 1-3). For each simulation, we generated data
for 100 agents, with each subject completing three sequences of 300 trials (3 different cues).
We ran 50 simulations per agent and analyzed recovery using Pearson correlations between
true parameters and averaged fitted parameters. We obtained reasonable parameter recovery
correlations. Pearson correlations were for v = 0.707, 62= 0.671, and B = 0.973.

Here are the updated recovery results

30


https://github.com/payampiray/piray_daw_2020_ploscb

Volatility (r = 0.71) Stochasticity (r = 0.67) Beta (r = 0.97)
s

2
7/
0.9 09 7
08 s

08 /
© 07 0 07 p oA )
Q jo} [
’g 0.6 g “‘é’
Sos i s
o o o
- 04 kel il
L 2 i)
F03 & E

02f

0.1

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1.2 14 1.6 1.8 2
generated Parameters generated Parameters generated Parameters

Revisions in the paper:
We updated the Method S8. Model validation and Figure S2

—>4. It appears that the data were estimated hierarchically, with individual estimates then used

for analyses - this may be reducing reliability and affecting the validity of other results.

Responses:
We value this opportunity to clarify our methodological approach and address your important

concerns about reliability and validity.

However, based on both statistical theory and empirical evidence, we would like to respectfully
explain why hierarchical methods enhance rather than reduce the reliability of parameter
estimates and how Hierarchical Bayesian Inference (HBI) (Piray et al., 2019) is appropriate for

both group and individual parameter estimates.

Theoretical foundation of hierarchical methods

First, hierarchical Bayesian estimation implements partial pooling across subjects, which helps
constrain individual estimates when data are noisy (Bailey, 2005; Gelman, 2003). This approach
acknowledges both individual variations and group-level patterns, providing a balanced

framework for studying individual differences (Karvelis et al., 2023).

Statistical advantages of HBI
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As the original paper introduced HBI (Piray et al., 2019) stated on Page 23

“Empirical Bayes methods play an increasing role in modern statistics. These methods essentially take
a hierarchical approach, by assuming that individual data are generated based on the probabilistic
properties of the population. This hierarchical approach has important consequences. The most
important consequence is that they provide a promising solution to the classical problem of priors in
Bayesian statistics by providing informative, yet objective, priors at the individual level. Furthermore, by
partly sharing parameters across subjects, they reduce overfitting relative to non-hierarchical models,
which in turn allows them to confidently fit more complex models with a smaller penalty for overfitting.
This is because non-hierarchical methods assume that the extra parameters of a complex model are
independent. For example, consider a model space in which the more complex model has one extra free
parameter and there are 40 subjects in the dataset. Fitting the dataset with the complex model using
non-hierarchical methods introduces 40 additional independent free parameters, driving the danger of
overfitting, and accordingly an excessive penalty to account for this possibility in assessing the evidence
for the model. The hierarchical approach, however, assumes that the individual parameters are
dependent, as they are all generated according to the same distribution, sharing a single mean parameter
and smaller deviations from it. Modeling this hierarchical dependency enables those methods to avoid

penalizing complex models as excessively.”

Empirical evidence supporting hierarchical methods

Multiple studies have rigorously validated hierarchical approaches in individual difference

research, computational psychiatry, and neuroscience:

Ahn et al. (2011)(Ahn et al., 2011) use empirical research to argue that, compared to MLE, the
hierarchical Bayesian estimation is the best method for obtaining accurate individual and group

parameter estimates.

Karvelis, Paulus, and Diaconescu in their latest review (Karvelis et al., 2023), Section 4.1.
Hierarchical model fitting methods can improve reliability, where they argued that hierarchical
Bayesian methods improve parameter estimation by: (1) accounting for uncertainty at different
levels; (2) allowing individual parameter estimates to be informed by group statistics and vice

versa; (3) reducing the impact of noise in individual-level data

The reliability of hierarchical methods for studying individual differences has been demonstrated

in several high-impact studies, for example: Swart et al. (Swart et al., 2017) employed
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hierarchical parameter estimation to study individual differences in dopaminergic drug effects on
learning. Zhang and Glascher (Zhang & Glascher, 2020) applied hierarchical parameter
estimation to investigate the individual differences in social observational learning. More related
research see (Chakroun et al., 2020; Piray & Daw, 2020; Sapey-Triomphe et al., 2023).

Thus, the hierarchical approach actually strengthens rather than weakens individual difference

analyses.

->5. Figure S2 also indicates other model estimation issues leading to extreme beta values

(assuming beta is the last panel).

Responses:
Thank you for raising this question about the apparent extreme values in Figure S3 (originally

Figure S2). This figure shows the parameter estimation (volatility, stochasticity, inverse
temperature) from the split-half reliability analysis. The split-half reliability analysis involved
fitting our model separately to each participant’s first and last 150 trials. For parameter
transformation, we employed the Hierarchical Bayesian Inference (HBI) framework, which
typically assumes distributed priors for all free parameters. Following the approach of Piray &
Daw (2020), we applied an exponential transformation (exp(x)) as the previous study used for
inverse temperature (Piray & Daw, 2020). This exponential transformation explains why the beta
values appear extreme in the visualization. For example, beta estimates of 5 and 6 become
148.41 and 403.43 after transformation. However, it's important to note that the underlying

parameter estimates (before transformation) for beta remain typically distributed.

first half trials second half trials
estimated raw B estimated raw B

500 500 1 - . ‘

300 1 300 | ‘

And here is the distribution for beta value (before transformation) with all trials.
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We have Figure S3 with the raw parameter estimates from the model to better illustrate the

reliability of our measurements.
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->6. What was the parameter recovery for the HMM transition probabilities?

Responses:
We conducted a parameter recovery analysis for the HMM transition probabilities in response to
your query.

First, we simulated a dataset with 100 subjects and repeated this process 50 times. Wilson and
Collins (2019) (Wilson & Collins, 2019) proposed to adjust the input values of simulations to
empirical obtained behavioral results. Therefore, we randomly selected 100 sets of transition
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probabilities from our empirically fitted parameters and added small amounts of random noise
(10% of the parameter’s standard deviation) to create true parameter values for simulation. This
approach ensured that our simulated parameters maintained realistic distributions while
introducing some variability. For each parameter set, we generated synthetic choice sequences
(300 trials each) using the true parameters via hmmgenerate function in matlab, then we applied
our HMM fitting procedure to recover the parameters from these sequences, and finally, we
compared the recovered parameters to the true generating parameters by using the Pearson
correlation. The recovery results were robust, we found the mean value of correlation between
true and fitted parameters for P(explore | explore)= 0.644, and the averaged correlation for
P(exploit | exploit)= 0.793.

Transition parameter recovery metrics

mean r SD
Explore - Explore ~ 0-644 0.093
Exploit - Exploit 0.793 0.098

Note. mean r = Pearson correlation coefficient between true and recovered parameters, mean

recovery rate from 50 simulations; SD = Standard deviation.

Revisions in the paper:

1, we added Method S7. Parameter recovery for HMM

2, we added one sentence to index Method S7 in Main Text, Method Section

Please note the last sentence underlying Hidden Markov Model section, “Model details are
provided in Supplement Method S2. Model results of HMM can be found in Figure2 and Table
S4. Parameter recovery for HMM see Method S7.”
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—>7. HBI does not use empirical priors, as stated, but estimates hyperparameters and lower-
level parameters simultaneously. The authors do use empirical priors based on a MAP analysis

but this is a separate modeling step.

->8. What were the starting values based on the MAP analysis? This is not reported.

-9. No convergence statistics or details on the estimation (number of chains, samples per

chain, how convergence was assessed) are reported for the HBI estimation.

We appreciate your detailed methodological questions regarding HBI implementation. Since
questions 7-9 are closely related, we will address them together to provide a comprehensive

response.

We acknowledge that our Main Text did not provide sufficient methodological details (but see
S|, MethodS6 and original HBI methodological paper by Piray et al), as we relied on the well-

documented HBI framework from Piray et al. (2019).

In HBI framework, priors are constructed based on data

HBI does estimate hyperparameters and individual parameters simultaneously, but HBI
implements empirical Bayes principles where group-level distributions serve as priors for
individual parameters. These priors are empirical in that they are informed by the data through
an iterative process. Key evidence from Piray et al. (Piray et al., 2019), in the Discussion, Page
23, paragraph01:

“In this work, we took an empirical Bayes approach [31,32], in which priors are constructed based on
data. In other words, parameters at the individual level are regularized by statistics across all individuals

in the group”

HBI does not use MAP analysis.

The HBI does not rely on MAP analysis for analyses. Instead, it uses (1) direct initialization of
individual parameters using Laplace approximation (2) full variational Bayesian inference for
hierarchical parameter estimation and (3) iterative updates of both individual and group

parameters
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The initialization process is described in the Methods (Page 31): “We initialize the parameters Okn

and Akn by fitting all models separately to all participants (with an initial Gaussian prior), i.e., assuming

asifzkn=1"

Based on HBI’s feature and MAP’s feature, here we listed the reasons that the HBI did not
involve MAP: (1) HBI needs full posterior distributions, MAP’s point estimates would lose
uncertainty information but only provide point estimate; (2) HBI performs hierarchical inference

on multiple levels, MAP is a single-step optimization

Reqgarding starting values and convergence

HBI uses variational inference, not MCMC, and thus does not require multiple chains. The
convergence is monitored through changes in normalized parameters between iterations; the
HBI algorithm terminates when dx < 0.01 or a maximum of 50 iterations is reached. Of note, HBI
rarely hits the iteration limit of 50. As the paper Page 31 noted: “In our analyses, we
terminated the algorithm if the change in the normalized value of
parameters between two consecutive iterations, j — 1 and j, was smaller

than 0.0I"

where the dx = sqgrt(mean((x-xpre).*2) (in matlab code)
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Figures:
->10. The binning of scatterplot data (in e.g., Figure 1C) is confusing. Why not plot all data

points as done in 1B?

Responses:

Thank you for this suggestion for data visualization. We added scatter plots showing all
individual data points in the Supplementary Information

Figure S4 (corresponding to main Figure 1C-1D)
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Figure S6 (corresponding to main Figure 3C)
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Figure S7 (corresponding to main Figure 4A)

r=-0.08,p=0.0128 r=0.13,p<0.0001

o OF

> 5

-10
0 50 0 10 20
apathy anxiety

We maintained the binned correlation plots (25 quantile bins based on the x-axis) with error bars

showing the standard error in Main Text for the following reasons:

1. Specific reason for Figure 1B with all individual points

The aim of Figure 1B is to show most of our individuals had good performance in this task, thus
the individual points are essential here to clearly show the distribution of performance across

participants and identify outliers

2. Data density:

Plotting all 1001 participants can create significant overplotting. The overplotting can obscure
underlying patterns, especially in dense regions of the plot. The binned approach helps reveal

the central tendency and spread of the data.

3. Visual clarity:
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The binning helps highlight the underlying relationship between variables, and it reduces visual
noise while maintaining statistical accuracy (All statistical analyses were performed on the raw

(unbinned) data, as noted in the figure caption)

->11. Panels in S2 are not labeled.

Revisions in the paper:

We revised Figure S3 (originally FigureS2) with labels for each panel.
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Framing, analysis, and interpretation:

->12. More explanation and contextualization of what P(explore) from the HMM means, and
where this value comes from, is needed in the main text.

Responses:

We agree that the manuscript would benefit from a better explanation of P(explore). P(explore)
is defined as the proportion of trials classified as exploratory states in a participant’s choice

sequence derived from HMM.

Revisions in the paper:
Hidden Markov Model

“We fit a Hidden Markov Model (HMM) to the behavior, to decode the hidden state of each trial

for each participant. We fit HMM via expectation-maximization using the Baum-Welch algorithm

and decode hidden states from observed choice sequences by the Viterbi algorithm(32). From
this analysis, we extracted two types of measures: First, p(explore), which quantifies the overall
proportion of trials classified as exploratory states for each participant. Second, the transition
probabilities, which characterize the temporal dynamics of state switching: p(explore—explore)
indicates the probability of maintaining an exploratory state between consecutive trials, with
higher values reflecting more sustained exploration periods; p(exploit—~exploit) represents the
probability of maintaining an exploitative state, with higher values indicating more persistent

exploitation of chosen options (32). Model details are provided in Supplement Method S2.

Model results of HMM can be found in Figure2 and Table S4. Parameter recovery for HMM see
Method S7.”
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->13. How correlated are p(switch) and p(explore) from the model-free and HMM analyses? Do

they measure separable constructs?

Responses:

Thank you for this question.

—->How correlated are p(switch) and p(explore) from the model-free and HMM analyses

The correlation between P(explore) and P(switch) is: r=0.916, p<0.0001
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p(switch)
P(switch) is calculated as the proportion of trials where participants selected a different option
from their previous choice. P(explore) quantifies the overall proportion of trials classified as

exploratory states from HMM for each participant.

->Do they measure separable constructs?

They measure separate but related constructs. P(switch) is a model-free measure that is
sensitive to all changes in choice, regardless of context. P(explore) derives from the HMM, and
is constrained by the inferred states, which are sensitive to the temporal structure of choices
(unlike P(switch)). We expect a high degree of switching in the explore state, and a low degree
in exploit, but not all switch decisions are necessarily labeled exploratory and not all repeat
choices are labeled exploit. P(explore) is grounded in a theory of the latent states of exploratory

decision-making and mathematically related to other properties of the HMM.

Revisions in the paper:
We added Figure S10.
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Responses:

The correlation between P(explore) from HMM and beta from KF is: r = -0.667, p<0.0001
indicating a strong negative relationship. This result makes theoretical sense because the beta
indicates choice consistency; high beta (more consistent choices) should correspond to low
P(explore), while low beta (more random choices) should correspond to high P(explore). So,

this result provided convergent validity between our two modeling approaches

Responses:

While our task was not designed to distinguish between directed and random exploration, we
conducted analyses following the classification approach used in previous work to address your
question (Chakroun et al., 2020; Daw et al., 2006; Wiehler et al., 2021). We were able to
compute directed/random exploration ratios (analysis details see below, point #5) and

show the results below:
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While these results suggest more random than directed exploration, we prefer not to
include them in the manuscript for the following reasons: (1) they are not directly
comparable to previous findings due to fundamental differences in task design; (2) they would

not substantially contribute to our paper’s main focus on the relationship between uncertainty
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processing and affective states. This question would be more appropriately addressed in future

work specifically designed to dissociate these forms of exploration.
To be more specific, we provided details to support our statements as follows:

1. In Daw’s 2006 paper, and Jan Peter’'s team’s 2021 paper “Attenuated Directed
Exploration during Reinforcement Learning in Gambling Disorder” and 2020 paper
“Dopaminergic modulation of the exploration/exploitation trade-off in human decision-
making”, they used the task from Daw’s 2006 paper. Although both are multi-armed
restless bandit tasks, there are fundamental differences in the random walk settings
between our task and Daw’s 2006 design.

From Daw et al., 2006, Sl, Page1

“The payoff for choosing the ith slot machine on trial t was between 1 and 100 points, drawn
from a Gaussian distribution (standard deviation o, = 4) around a mean u;and rounded to the
nearest integer. At each timestep, the means diffused in a decaying Gaussian random walk, with
Wit = Aui+ (1 -1)0 + v for each i. The decay parameter A was 0.9836, the decay center 0 was

50, and the diffusion noise v was zero-mean Gaussian (standard deviation o4=2.8). ”

Our setting:

“Participants were free to choose between three targets for the potential to earn a
reward of 1 point. Each target is associated with a hidden reward probability that
randomly and independently changes throughout the task. We seeded each participant’s
reward probability randomly to prevent biases due to particular kinds of environments.
Specifically, on each correct trial, there was a 67% chance that the reward probability for
each target would either increase or decrease by 0.2, with these probabilities bounded

between 0 and 1.0. ”

Task parameter settings directly influence model selection and construction (Wilson &
Collins, 2019). In papers based on Daw 2006 and Jan Peter’s team’s work (using the

same task and model), the model was constructed as:

i = A + (1 - 2)8

2 _ 9222 2
Ul,t+1 =41 O-l,t + Jd
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u is the mean expected value, o is the SD of the expected value, 1 is the decay rate
(fixed to 0.9836), u is the decay center (fixed to 50), and o7 is the SD of the diffusion

noise (fixed to 2.8)., as these parameters are from the task settings.

Update rules:

#;;1 = .U/c;t + k:6;

Where the §; is the prediction error

8; = outcome, — e+

And k, is the learning rate (kalman gain)

ce,t

ey = 2 2
+ o,

O.Ct,t

Specifically, a?;t refers to the estimated uncertainty of the expected value of the chosen

bandit, and ¢, is the observation SD, that is, the variance of the normal distribution from

which payouts are drawn (fixed to 4).
The uncertainty of the expected value of the chosen bandit is then updated according to:

2 — 2
Ocrt+1 = (1 - kt)o-ct,t

The modified softmax function is:

exp (Bl + 9oz))

plee =1) = Yjexp (ﬁ[lf]\t + (PO/}\t])

where the ¢ implements directed exploration.

However, in our paper, as described in Main Text and Method S3, we use the Kalman
filter approach of Piray and Daw (2020)(Piray & Daw, 2020), a model better suited for
broader reinforcement learning tasks. We cannot define observational noise, diffusion

noise, decay rate, and decay center parameters like these three papers.
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2. Our paper’s purpose is to explore how people’s weighting of two types of uncertainty
relates to their mental states and associated exploratory behavior

3. Currently, no direct evidence indicates whether higher weighting of volatility corresponds
to more directed exploration. To verify such a relationship would require (1) using the
same 4-armed-restless bandit task as Daw et al., 2006 (2) implementing both their

original model and their 2019 PCB model (3) analyzing parameters’ correlations

This is indeed an interesting question: while directed exploration is defined as
uncertainty-guided exploration, we don’t know whether it's guided by process noise
(volatility) or observational noise (stochasticity). The same question applies to random
exploration. To our knowledge, there’s no current evidence showing direct relationships

between volatility, stochasticity, and exploration.

4. Another approach would be using paradigms that introduce novel options (Hogeveen et
al., 2022) to more objectively quantify directed exploration.

5. Following your suggestion and Jan Peter’s team’s definition of directed/random
exploration (page 4)
“Based on the best-fitting computational model, trials were classified. Exploitation trials are
trials with choices of the bandit with the highest sum of expected value, uncertainty bonus and
perseveration bonus (i.e., the highest softmax probability). Exploration trials are all other trials.
These were further subdivided into trials on which participants selected the bandit with the
highest exploration bonus (directed exploration trials) and all other trials (random exploration

trials)”

We attempted similar analyses by adding a beta? parameter to the softmax to capture
directed exploration. However, this model was not optimal, with a BIC of 399056. Here,

we plotted the distribution of directed/random exploration ratios across participants.

46



0 2Histogram of exploration ratios

0.15¢

017

probability

0.05¢

0

0 1 2
directed/random Exploration ratio

In summary, we prefer not to incorporate these results into our current paper’s framework.
Instead, we appreciate this thoughtful suggestion as it points to important questions for future

research investigating how different forms of exploration relate to uncertainty processing and
affective states.
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—>15. The group categorization section, where the top and bottom 25% of scores are binned,
isn't justified. It appears to just be reporting the same results from the analyses with continuous

questionnaire scores, but with an artificial dichotomization of the data.

Responses:
We agree with your opinion about the limitations of dichotomizing continuous variables. Our

primary analyses appropriately use continuous measures of anxiety and apathy, with the
correlational results reported throughout the paper. Given this feedback and a similar concern

from Reviewer 2, we have moved the categorical analyses to the Table S6 and Text S3.

We kept the violin plots strictly for visualization.

- 16. Cross-sectional mediation analyses make causal claims that cannot be justified by the
present data.

We have revised the manuscript to reflect this limitation:

Revisions in the paper:

“To examine potential associations between individual differences in the perception of
uncertainty, exploratory behavior, and affect, we conducted a mediation analysis (see
Supplement Method S10) using anxiety, switching after reward omission (P(switch | 0)), and v/s.
The results suggest that v/s may partially account for the relationship between anxiety and the
tendency to switch after receiving no reward (Figure 4B). Similar patterns were observed for the
analogous HMM model-based measures (see Figure S9). No significant mediation effect was

found for apathy.”

Also we revised the tone in Discussion, PargraphO1.

“Our mediation analysis suggests that the perception of volatility relative to stochasticity may be
associated with the relationship between anxiety and exploratory behavior after reward
omission. The apparent relationship between anxiety and a higher weighting of volatility relative
to stochasticity may be linked to increased information-seeking behavior. This could potentially

reflect a strategy aimed at reducing uncertainty and managing perceived risks more effectively”
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->17.1 The two dimensions "found" by the UMAP seem to reflect differences in choice, not

learning, behavior that are not captured by the models here

Responses:
We believe this comment is based on a misinterpretation and we appreciate the opportunity to

clarify it. The UMAP analysis is indeed sensitive to learning, as explained below.

1. Temporal learning dynamics

The behavioral sequences used in our UMAP analysis ({choicet1, outcomet1, choice})
inherently capture learning dynamics by incorporating both previous outcomes and subsequent
choices. These sequences reflect how participants learn from feedback and adjust their

decisions accordingly, not just their raw choice patterns.

2. Integration with computational parameters

The strong correlation between dimension 2 and the v/s ratio (r = -0.72, p<107'®) demonstrates
that this dimension captures computational aspects of learning. The v/s ratio represents how
participants learn from and integrate feedback over time. This is not merely a choice metric but

rather reflects the underlying learning process that guides those choices.

3. Dissociable relationships

Importantly, we found that dimension 1 correlates strongly with exploratory behavior (r = -0.90)
but not with v/s (r = 0.03), while dimension 2 shows the opposite pattern (r = -0.19 with
exploration, r = -0.72 with v/s). This double dissociation suggests that these dimensions

capture distinct aspects of learning and decision-making, rather than just choice behavior.

->17.2 specifically, whether the ratio of volatility to stochasticity is related to increased versus

decreased exploration.

Responses:
Our analysis reveals that the relationship between the ratio of volatility to stochasticity (v/s) and

exploration is more complex than a simple linear correlation. Specifically, we found:

1. Non-linear relationship
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As shown in Figure S$13, we found both significant linear and quadratic relationships between
v/s and exploration (linear term, coefficient = 0.03, SE = 0.005, t(996)=5.69, p<10®; quadratic
term, coefficient = 0.009, SE = 13x10*, 1(996)=6.948, p<10™'"). This non-linear relationship

helps explain why the correlation appears different in different parts of the manifold.

2. Context-dependent effects

When we divided the manifold into two groups based on dimension 1 scores (as shown in

Figure 5H), we found that the relationship between v/s and exploration differs between groups:

2.1 In the monotonically decreasing group (individuals with high anxiety & low apathy), higher

v/s correlates with decreased exploration

2.2 In the monotonically increasing group (individuals with low anxiety & high apathy), higher v/s

correlates with increased exploration

—>a. The claim that the UMAP analysis has found the "latent structure of adaptive behavior" is

an overly strong claim when based on a few measures from one behavioral task.

Revision in the paper

We have revised the manuscript to limit the scope of our interpretation of our UMAP results.

original version: “Our results showed that exploration and uncertainty estimation related closely

to the two axes of a parabolic latent structure of adaptive behavior ”

revised version: “Our results showed that exploration and uncertainty estimation related closely

to the two axes of a parabolic latent structure of the explore-exploit trade-off in our task.”
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Responses:
We agree that additional validation is warranted, and we have already taken several steps to

confirm our findings:

PCA and t-SNE lead to the same results

We applied multiple methods including t-SNE and PCA to the same behavioral data (see Figure
S$11 and Table S7). All methods revealed similar manifold structures and correlational patterns,
suggesting the structure is robust to the specific dimensionality reduction technique used.

Simulation validation: different decision strategies associate with distinct low-dimensional shape

We simulated 1001 agents’ decision strategies in the three-armed restless bandit task including

(1) Ideal agent: Agent always selects the option with the highest reward probability (optimal
choice based on perfect knowledge of the reward probabilities)

(2) Random choice: Agent randomly selects among the three options with equal probability
(3) Pure staying: Agent consistently chooses the same option
(4) Pure switching: Agent switches to a different option on every trial

(5) Win-switch-lose-stay: Agent maintains the same choice after no reward and switches after
reward

(6) Win-stay-lose-switch: Agent maintains the same choice after reward and switches after no
reward

Then we followed the same method to obtain all possible sequences of choices and rewards.
Applying UMAP, we found each strategy produced distinctly different manifold structures (Figure
S14), confirming that UMAP does not simply impose artificial structure in this case but rather
reveals meaningful patterns when they exist in the data. The win-stay-lose-switch manifold
resembled the real human data manifold most closely, which is consistent with the observation
that a win-stay-lose-switch strategy is a good first-order approximation of the behavior.
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Revision in the paper

We added Figure S14 to describe the simulation results.
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—>For example, if anxiety/apathy are correlated with the UMAP dimensions, do the relationships

between v/s and p(explore) differ in high vs. low apathy or anxiety groups?

Responses:
If we used the traditional quartile splits (or group mean+1SD) to split high/low anxiety and

high/low apathy groups separately, the higher v/s consistently predicts increased exploration

regardless of group membership.

We believe this result demonstrates that the traditional analysis examining separate anxiety and
apathy groups may not provide a full picture of the results. In contrast, our manifold analysis
integrates traits, behaviors, and model parameters to uncover two distinct subgroups with

opposing patterns between v/s and P(explore).

->19. "Within the decreasing group, higher perceived volatility correlates with reduced
exploration. Conversely, in the increasing group, an increased perception of volatility tends to
stimulate more exploratory actions" (p. 17) - couldn't the opposite also be true, that more

exploration could increase the perception of volatility?’

Responses:
The reviewer is correct, we cannot know the direction of causality. We changed the tone and

revised the related text in Results, Figure caption (Figure 5H) and Discussion (paragraph03)

(see Revision in the paper below)

—>specifically, whether the ratio of volatility to stochasticity is related to increased versus

decreased exploration.(from comments#17)

Responses:
v/s has a quadratic relationship with exploration, such that for the majority of participants, higher

v/s predicts increased exploration, for a smaller subset of individuals, higher v/s is associated

with decreased exploration (see Sl FigureS12).

Revision in the paper

1. Revised the results interpretation (to address Comments#19)

revised version:

“To better understand the structure of the manifold, we examined its relationship with affective
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states and exploration patterns. Using a critical dimension 1 score of -0.671 as the dividing point
(see Method S12 and Figure S12), we identified two distinct groups: a monotonically decreasing
group (N=390) and a monotonically increasing group (N=611). These groups showed markedly
different characteristics. The decreasing group exhibited higher overall exploration rates and
was characterized by slightly higher anxiety levels (1(999)=2.08, p=0.037) and lower apathy
levels (1(999)=-3.56, p=0.0003), with higher v/s ratios associated with decreased exploration. In
contrast, the increasing group showed lower overall exploration rates, lower anxiety levels, and

higher apathy levels, with higher v/s ratios correlating with increased exploration.

These patterns reveal complexity that is not captured by traditional analyses. When using
simple quartile splits of anxiety and apathy groups, higher v/s consistently predicts increased
exploration regardless of group membership. The manifold approach, however, integrates
multiple behavioral aspects, including affective states (anxiety and apathy), exploration
behaviors, and uncertainty processing (v/s ratio), allowing us to identify interaction patterns that
would be missed when examining each factor in isolation. This integration also captures the

non-linear relationship between v/s and exploration (Figure S13)”

And we moved the paragraph:

“It is worth noting that we only found linear relationships between apathy, anxiety, and
exploration, as well as between these affective states and the ratio of volatility to stochasticity
(our analysis using higher order effects among these variables did not yield significant results,
more details can be found in Table S8).” After the revised paragraph, to further clarify, only the
v/s and exploration have a quadratic relationship.

2. Revised the figure caption for Figure 5H to be more clear

revised version

“(H) We divided the manifold into the monotonically decreasing group (the most left panel) and
monotonically increasing group (the most right panel). The decreasing group exhibited higher
overall exploration rates and was characterized by slightly higher anxiety levels and lower
apathy levels. Within this group, higher v/s ratios were associated with decreased exploration. In
contrast, the increasing group showed lower overall exploration rates, lower anxiety levels, and

higher apathy levels, with higher v/s ratios correlating with increased exploration.”

3. Revised the Discussion, paragraph 03

revised version
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“Segmenting the data on the manifold further illuminated the fine-grained interplay between
affective states and exploratory behavior. The monotonically decreasing group (N=390, Figure
5H), characterized by relatively higher anxiety and lower apathy, showed higher overall
exploration rates compared to the monotonically increasing group (N=611) who had lower
anxiety and higher apathy. Intriguingly, these groups exhibited opposing relationships between
uncertainty estimation and exploration: within the decreasing group (left), higher v/s ratios were
associated with decreased exploration, while within the increasing group (right), higher v/s ratios
predicted increased exploration. This pattern suggests that the relationship between uncertainty
estimation and exploratory behavior depends on an individual’'s mixed mental states. The shape
from UMAP captures the non-linear relationship between the ratio of volatility to stochasticity
and exploration (Figure S13), raising important questions about how environmental volatility and

stochasticity might affect exploration, and its implications for mental health.”

-20. The interpretation of Figure 5H ("This exploration serves as a coping strategy to relieve
anxious feelings in the environment") goes beyond what can be supported by the data.

Revision in the paper

We've deleted this sentence in the figure caption for Figure 5H
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