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Supplement Methods 

 

Method S1. Three-armed restless bandit task 

 

Participants were free to choose between three targets for the potential to earn a reward of 1 

point. Each target is associated with a hidden reward probability that randomly and 

independently changes throughout the task. We seeded each participant’s reward probability 

randomly to prevent biases due to particular kinds of environments. Specifically, on each correct 

trial, there was a 67% chance that the reward probability for each target would either increase or 

decrease by 0.2, with these probabilities bounded between 0 and 1.0. Due to the variable and 

independent nature of the rewards, participants could only estimate the probabilities by actively 

sampling from the targets and accumulating their reward experiences over time. 

 

Method S2. Hidden Markov Model 
 

In current study, the observed choices (y) are “emissions” that are generated by an unobserved 

decision process that is in some latent, hidden state (z).  

Latent states are defined by both the probability of making each choice (k, out of Nk possible 

options), and by the probability of transitioning from each state to every other state.  

Our model consisted of two types of states, an explore state and the exploit states. The 

emissions model for the explore state was the maximum-entropy distribution for a categorical 

variable, a uniform distribution: 

 𝑝𝑝(𝑦𝑦𝑡𝑡 = 𝑘𝑘|𝑧𝑧𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) = 1
𝑁𝑁𝑘𝑘

 

Where N is the number of stimuli that were presented (i.e. N = 3), 

and t is the trial number. 

Because exploitation involves repeated sampling of each option, exploit states only permitted 

choice emissions that matched one option. That is: 

 𝑝𝑝(𝑦𝑦𝑡𝑡 = 𝑘𝑘|𝑧𝑧𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 , 𝑘𝑘 = 𝑖𝑖) = 1 

 𝑝𝑝(𝑦𝑦𝑡𝑡 = 𝑘𝑘|𝑧𝑧𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 , 𝑘𝑘 ≠ 𝑖𝑖) = 1 

The latent states in this model are Markovian, meaning that the current state (𝑧𝑧𝑡𝑡) depends only 

on the most recent state (𝑧𝑧𝑡𝑡−1): 

 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑧𝑧𝑡𝑡−1,𝑦𝑦𝑡𝑡−1, … , 𝑧𝑧1,𝑦𝑦1) = 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑧𝑧𝑡𝑡−1) 



5 

This means that we can describe the entire pattern of dynamics in terms of a time-invariant 

transition matrix between 4 possible states (three exploit states and one explore state). This 

matrix is a system of stochastic equations that describe the one-time-step probability of 

transitioning between every combination of past and future states (i, j). 

 𝑝𝑝(𝑧𝑧𝑡𝑡 = 𝑖𝑖|𝑧𝑧𝑡𝑡−1 = 𝑗𝑗) 

Because we had only a limited number of trials for each participant (300), parameters were tied 

across exploit states: each exploit state had the same probability of beginning (from exploring) 

and of sustaining itself. For conceptual reasons, the model also assumed that participants 

started in exploration and had to pass through exploration in order to start exploiting a new 

option, even if only for a single trial (Chen et al., 2021; Ebitz et al., 2018, 2019, 2020). 

We have previously shown that models that lack these constraints by design tend to 

approximate them when fit to sufficiently large datasets (Chen et al., 2021; Ebitz et al., 

2018).Because the emissions model was fixed, certain parameters were tied, the structure of 

the transmission matrix was constrained, and the initial state was specified, the final HMM had 

only two free parameters: one corresponding to the probability of exploring, given exploration on 

the last trial, and one corresponding to the probability of exploiting, given exploitation on the last 

trial. We have previously reported that this constrained model does not underperform an 

unconstrained model (Chen et al., 2021; Ebitz et al., 2018). And that unconstrained models tend 

to closely resemble to the constrained model when fit to large amounts of data (Ebitz et al., 

2018). 

 

The HMM was fit via expectation-maximization using the Baum Welch algorithm (Bilmes, 1998). 

This algorithm finds a (possibly local) maxima of the complete-data likelihood. Because the 

participants had no knowledge of the environment at the first trial, we assumed they began by 

exploring, rather than adding another parameter to the model here. The algorithm was 

reinitialized with random seeds 20 times, and the model that maximized the observed 

(incomplete) data log-likelihood across all the sessions for each participant was ultimately taken 

as the best. To decode latent states from choices, we used the Viterbi algorithm (Forney, 1973)  

to discover the most probable a posteriori sequence of latent states. 

 

Method S3. Kalman filter 
 

In the Kalman filter model for a multi-armed bandit task, process noise and observation noise 

refer to two distinct sources of uncertainty that affect the learning and decision-making process. 
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Process noise represents the uncertainty in the evolution of the hidden state (reward mean) 

over time. It accounts for how the true state evolves from one point in time to the next. In 

mathematical terms, process noise is part of the state transition equation in the Kalman Filter: 

𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡−1 +  𝑒𝑒𝑡𝑡 

𝑥𝑥𝑡𝑡 is the state at time 𝑡𝑡 

𝑒𝑒𝑡𝑡 is the process noise 𝑡𝑡, which is assumed to be drawn from a normal distribution with zeros 

mean and process noise variance 𝑣𝑣. Where the 𝑒𝑒𝑡𝑡~𝑁𝑁(0, 𝑣𝑣). 

The process noise captures the idea that the reward-means for each arm can change from one 

trial to the next, even in the absence of any observations. A higher process noise variance 𝑣𝑣 

indicates a more volatile environment, where the reward means are expected to change more 

rapidly. 

In contrast, observation noise represents the uncertainty in the observed rewards, given the 

current hidden state (reward mean). Which is assumed to be Gaussian with zero mean and a 

fixed variance 𝜎𝜎2. 

The observation noise captures the idea that the observed rewards are noisy and can deviate 

from the true reward mean due to random fluctuations or measurement errors. 

A higher measurement noise variance indicates a more stochastic environment, where the 

observed rewards are less reliable and informative about the underlying reward means. 

The Kalman Filter operates optimally when the statistical properties of the process noise and 

the measurement noise are accurately known.  

When observation noise variance (𝜎𝜎2) is high relative to the process noise variance (𝑣𝑣), the 

Kalman gain will be small, and the model will rely more on its prior beliefs and less on noisy 

observations. Conversely, when the observation noise variance (𝑣𝑣), is high relative to the 

process noise variance (𝜎𝜎2), the Kalman gain will be large, and the model will update its beliefs 

more strongly based on the observed rewards. 

 

Method S4. Volatile kalman filter for three-armed bandit task 
 

The key difference between a standard Kalman filter and a volatile Kalman filter (VKF) is the 

variance of the process noise, a stochastic variable that changes with time. In other words, the 

VKF introduces parameters to handle the volatility in the process noise. Specifically, it allows 

the process noise variance 𝑣𝑣 to vary with the observed prediction errors, reflecting changes in 

environmental volatility.  
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Our approach here is essentially the same as that taken by Piray and Daw (Piray & Daw, 2020). 

Here, we briefly described the model details as follows. 

 

Kalman gain: 

𝑘𝑘𝑡𝑡 = (𝑤𝑤𝑡𝑡+𝑣𝑣𝑡𝑡−1)/(𝑤𝑤𝑡𝑡−1+𝑣𝑣𝑡𝑡−1 + 𝜎𝜎2) 

Update for the reward means: 

 

𝑚𝑚𝑡𝑡 = 𝑚𝑚𝑡𝑡−1 +  𝑘𝑘𝑡𝑡(𝑂𝑂𝑡𝑡 − 𝑚𝑚𝑡𝑡−1) 

 

Update for posterior variance 𝑤𝑤𝑡𝑡: 

 

𝑤𝑤𝑡𝑡 = (1 − 𝑘𝑘𝑡𝑡)(𝑤𝑤𝑡𝑡−1+𝑣𝑣𝑡𝑡−1)𝑤𝑤𝑡𝑡−1,𝑡𝑡 = (1 − 𝑘𝑘𝑡𝑡)𝑤𝑤𝑡𝑡−1 

 

Update for volatility: 

𝑣𝑣𝑡𝑡 = 𝑣𝑣𝑡𝑡−1 + 𝜆𝜆((𝑚𝑚𝑡𝑡 −𝑚𝑚𝑡𝑡−1)2 + 𝑤𝑤𝑡𝑡−1 + 𝑤𝑤𝑡𝑡 − 2𝑤𝑤𝑡𝑡−1,𝑡𝑡 − 𝑣𝑣𝑡𝑡−1) 

 

Method S5. Rescorla-Wagner models  
 

We also fitted the data to the classical Rescorla-Wagner model. Successful adaptation in a 

dynamic situation requires the appropriate feedback-based learning process where individuals 

integrate the feedback (reward or non-reward) into the stimulus-outcome association 

(Forstmann et al., 2016). The basic reinforcement learning model, the Rescorla-Wagner model 

can address this process well. So the first model (RW1) was defined as: 

 

𝑣𝑣𝑡𝑡 = 𝑣𝑣𝑡𝑡−1 + 𝑎𝑎 × (𝑅𝑅𝑡𝑡−1 − 𝑣𝑣𝑡𝑡−1)  

 

where 𝑣𝑣𝑡𝑡 is the value of the option on trial t.  

𝑎𝑎 represents the general learning rate from feedback.  

 

To verify whether participants employed distinct or shared computational responses to positive 

and negative feedback, we built another model with two learning rates, one for positive 

feedback and the other for negative feedback (den Ouden et al., 2013). This model (RW2) can 

be defined as: 
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𝑣𝑣𝑡𝑡  =  𝑣𝑣𝑡𝑡−1 + 𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝 × (𝑅𝑅𝑡𝑡−1 − 𝑣𝑣𝑡𝑡−1),𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝑣𝑣𝑡𝑡  =  𝑣𝑣𝑡𝑡−1 + 𝛼𝛼𝑛𝑛𝑛𝑛𝑛𝑛 × (𝑅𝑅𝑡𝑡−1 − 𝑣𝑣𝑡𝑡−1),𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

 

Where vt is the value of the option on trial t. 𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝and 𝛼𝛼𝑛𝑛𝑛𝑛𝑛𝑛 represent the learning rates from 

positive and negative feedback, respectively. 

For these two models, 𝑅𝑅𝑡𝑡−1 ∈  {0,1} represents the feedback received in response to 

participants’ choice on trial t-1. And 𝑅𝑅𝑡𝑡−1 −  𝑣𝑣𝑡𝑡−1 represents prediction error in trial t-1.  

 

 

We used a softmax choice function to map the value into choice. The softmax function for these 

four models can be defined as: 

 

𝑃𝑃𝑡𝑡  =  
𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽𝑉𝑉,𝑡𝑡�

𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽𝑉𝑉𝑡𝑡,1+𝛽𝛽𝑉𝑉𝑡𝑡,2 +𝛽𝛽𝑉𝑉𝑡𝑡,3 �
 

 

Where the 𝛽𝛽 represents the inverse temperature with choice value. 

 

 

Method S6. Model fitting and comparison 
 

Hierarchical Bayesian inference (HBI) is a powerful method for model fitting and comparison in 

group studies (Piray et al., 2019). Unlike traditional approaches such as maximum likelihood 

estimation (MLE) or maximum a posteriori (MAP) estimation, which fit models to each subject 

independently, HBI simultaneously fits models to all subjects while constraining individual fits 

based on group-level statistics (i.e., empirical priors). This approach yields more robust and 

reliable parameter estimates, particularly when individual subject data is noisy or limited. 

In our study, we employed HBI to fit models to choice data. The method quantifies group-level 

mean parameters and their corresponding hierarchical errors. To ensure that parameter 

estimates remain within appropriate bounds during the fitting process, we used the sigmoid 

function to transform parameters bounded in the unit range or with an upper bound and the 

exponential function to transform parameters bounded to positive values. The initial parameters 

of all models were obtained using a MAP procedure, with the initial prior mean and variance for 
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all parameters set to 0 and 6.25, respectively, based on previous research (Piray & Daw, 2020) . 

This initial variance allows parameters to vary widely without substantial influence from the prior. 

For model comparison, we used Bayesian model selection(Stephan et al., 2009), specifically 

employing the protected exceedance probability (PXP) to select the winning model. The PXP 

quantifies the probability that a given model is more frequent in the population than all other 

models under consideration while accounting for the possibility that the observed differences in 

model evidence may be due to chance. The model with the highest PXP is selected as the 

winning model. The detailed results of our model comparison, including PXP and BIC values for 

all models, can be found in Table S5. 

The better model performance further confirmed that the Kalman filter’s formulation aligns well 

with theories of how the individuals might perform inference and learning under uncertainty, 

making it particularly suitable for our study of affective influences on these processes. And the 

KF model has the ability to dissociate uncertainty, which allows us to separately estimate 

volatility (process noise variance) and stochasticity (observation noise variance). This distinction 

is crucial for our research questions about how anxiety and apathy influence perceptions of 

different types of uncertainty 

 

Method S7. Parameter recovery for HMM  
First, we simulated a dataset with 100 subjects and repeated this process 50 times. Wilson and 

Collins (2019)(Wilson & Collins, 2019) proposed to adjust the input values of simulations to 

empirical obtained behavioral results. Therefore, we randomly selected 100 sets of transition 

probabilities from our empirically fitted parameters and added small amounts of random noise 

(10% of the parameter’s standard deviation) to create true parameter values for simulation. This 

approach ensured that our simulated parameters maintained realistic distributions while 

introducing some variability. For each parameter set, we generated synthetic choice sequences 

(300 trials each) using the true parameters, then we applied our HMM fitting procedure to 

recover the parameters from these sequences, and finally, we compared the recovered 

parameters to the true generating parameters. The recovery rates were robust, we found the 

mean recovery rate for P(explore | explore)= 0.644, and the mean recovery rate for P(exploit | 

exploit)= 0.793. 
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Method S8. Model validation 
We validated our modeling procedure using two approaches. First, we assessed parameter 

recovery by refitting data simulated from the winning model and comparing the resulting 

parameter estimates to their ground truth. We simulated 50 agents’ choices and observations, 

repeating this process 50 times. Data were generated based on the Kalman filter (Eqs 1-3). 

Specifically, the observation on each trial was generated by random walk: there was a 67% 

chance that the reward probability for each target would either increase or decrease by 0.2, with 

these probabilities bounded between 0 and 1.0. The choice data were generated randomly by 

applying the softmax as the response model with parameter β.  Following the standard 

procedure in original Kalman Filter model shared by Piray & Daw (Piray & Daw, 2020), we 

conducted parameter recovery analyses using synthetic data generated from the Kalman Filter 

model (Eqs 1-3). For each simulation, we generated data for 100 agents, with each subject 

completing three sequences of 300 trials (3 different cues). We obtained reasonable parameter 

recovery correlations. The mean Pearson correlations were 0.707, 0.671, 0.973 for 𝑣𝑣, 𝜎𝜎2, and 𝛽𝛽, 

respectively (Table S6). 

Secondly, we tested the accuracy of the model prediction. We calculated the correlation 

between behavioral output predicted by model and real choices.  We conducted this analysis 

with a randomly selected subset of 50 participants from the full dataset of 1001 and 

demonstrated strong correlations between observed behaviors and model predictions across 

three cues: r = 0.719 for cue1, r = 0.730 for cue2, and r = 0.775 for cue3. All correlations were 

statistically significant, p < 0.0001; see Figure S1) 

 

Method S9. Split-half reliability 
To assess the split-half reliability of our task, we examined the consistency of overall choices 

and model parameters from the winning model between the first and second halves of trials. For 

overall choice proportion, we employed Pearson's correlations to calculate reliability. For model 

parameters, we utilized a more sophisticated approach, calculating model-derived estimates of 

Pearson's r values from the parameter covariance matrix. This method, which estimates first- 

and second-half parameters within a single model, has recently been validated for accurate 

parameter reliability estimation (Waltmann et al., 2022). We interpreted indices of reliability 

based on conventional values of <0.40 as poor, 0.4–0.6 as fair, 0.6–0.75 as good, and >0.75 as 

excellent reliability (Fleiss, 2011). Overall choice proportion showed fair-to-good reliability 

(r=0.65, r=0.64, r=0.53 for 𝑣𝑣, 𝜎𝜎2, and 𝛽𝛽, respectively, see Figure S2). The model parameters 

showed good-to-excellent reliability (r = [0.79, 0.78, 0.69] after Spearman-Brown correction).  
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Method S10.  Mediation analyses 
 

Mediation analysis is a statistical method used to examine the underlying mechanisms by which 

an independent variable influences a dependent variable through one or more mediator 

variables (Hayes, 2017). In our study, we employed the bootstrapping method to estimate the 

mediation effect of volatility and stochasticity on the relationship between affective states 

(apathy and anxiety) and exploration. Bootstrapping is a nonparametric approach to effect-size 

estimation and hypothesis testing that is increasingly recommended for many types of analyses, 

including mediation (Mackinnon et al., 2004). This method involves repeatedly resampling from 

the available data to generate an empirical approximation of the sampling distribution of the 

indirect effect (i.e., the effect of the independent variable on the dependent variable through the 

mediator). We used this distribution to calculate p-values and construct confidence intervals 

based on 5,000 resamples. Bootstrapping is preferred over other methods, such as the Sobel 

test because it does not assume the normality of the sampling distribution and provides more 

accurate confidence intervals that are bias-corrected and accelerated (Hayes, 2017; Mackinnon 

et al., 2004). This approach offers a robust and powerful way to test mediation hypotheses, 

particularly in cases where the sample size is relatively small or the data violate assumptions of 

normality (Preacher & Hayes, 2008). 

 
Method S11.  Dimensionality reduction method 
 

Popular and valid dimensionality reduction techniques to reveal manifolds include t-distributed 

stochastic neighborhood embedding (t-SNE) (Hinton & Roweis, 2002), uniform manifold 

approximation and projection (UMAP) (McInnes et al., 2018), and Principal component analysis 

(PCA) (Jolliffe & Cadima, 2016). However, t-SNE suffers from limitations, including slow 

computation time and loss of global data structure, and it is not a deterministic algorithm (Rhys, 

2020). The main drawback of PCA is that it is highly affected by outliers in the dataset (Jolliffe & 

Cadima, 2016). In contrast, UMAP is a deterministic and efficient algorithm, it also preserves 

both local and global structure of original high-dimensional data. UMAP was implemented in the 

R language. The eight-dimensional datasets from all participants were passed into the R 

package umap, version 0.2.8.0, available at https://cran.r-project.org/web/packages/umap/) with 

default parameter setting as n_component = 2, n_neighbors = 15, min_dist = 0.3, metric = 

‘Euclidean’. For reproducibility reasons, we fixed the random_state in this algorithm. The 

https://cran.r-project.org/web/packages/umap/
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hyperparameter n_neighbors decide the radius of the search region. Larger values will include 

more neighbors, thus forcing this algorithm to consider more global structure of original n-

dimension data. Another important hyper-parameter, min_dist determines the allowed minimum 

distance apart for cases in lower-dimensional space. metric defines the way that UMAP is used 

to measure distances along the manifold. 

 
Method S12. Turning point to divide the manifold into monotonically increasing and 
decreasing group 
 

To divide the manifold into monotonically increasing and decreasing groups, we sorted the 

scores for dimension 1 in ascending order. Initially, we fitted a linear model using the first three 

data points located on the upper left of the manifold. We then expanded this model by 

sequentially including one additional data point from dimension 1, continuing this process until 

we incorporated the last score (i.e., the maximum dimension 1 score, situated on the upper right 

of the manifold). Throughout this procedure, we monitored the t-statistic of the dimension1 

coefficient to assess the statistical significance of dimension1 as a predictor. Notably, a 

dimension 1 score of -0.671 marked the most significant negative coefficient, after which the 

relationship between dimension 1 and dimension2 gradually shifted to become positive (see 

Figure S11) 

 

Method S13.  False discovery rate correction 
The Benjamini-Hochberg False Discovery Rate (FDR) procedure (Benjamini & Hochberg, 1995) 

with q = 0.05 was chosen for our study due to its superior performance in managing multiple 

comparisons while maintaining statistical power (Riffenburgh, 2014). This method is particularly 

well-suited for our research, which involves multiple correlations testing related hypotheses. The 

FDR procedure effectively balances the need to discover true effects while controlling false 

positives, making it more appropriate than traditional family-wise error rate controls such as the 

Bonferroni correction (Storey & Tibshirani, 2003). Unlike the Bonferroni method, which can be 

overly conservative and lead to an increased risk of Type II errors (false negatives), the FDR 

approach offers a better control of false discoveries (Glickman et al., 2014). Furthermore, by 

setting q = 0.05, we ensure that the expected proportion of false discoveries among all rejected 

null hypotheses is controlled at 5%, providing a reasonable balance between identifying true 

effects and limiting erroneous conclusions. 
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Method S14. Data quality check 
We have attention checks include checking the consistency of forward and reverse scored 

survey responses and the face validity of direct questioning including “answer with the color of 

grass”. And participants must also meet a score threshold of 42% and an exploration threshold 

of 2 unique selections during the 25 practice bandit trials. 

Moreover, we implemented a three-step screening procedure to ensure data quality in our 

questionnaire responses (Zorowitz et al., 2023). First, we calculated the inter-item standard 

deviation (ISD) across all items for each participant (7 items for GAD-7 and 18 items for AMI), 

noting that low ISD values were not considered problematic as they might reflect genuinely 

consistent anxiety or apathy levels (e.g., not anxious or apathetic at all). Second, we detected 

extreme alternation patterns by examining consecutive item responses (e.g., 3-0-3-0-3-0), 

calculating absolute differences between adjacent responses, and determining the proportion of 

extreme jumps (defined as differences ≥ 3 points). Finally, we established flagging criteria 

where responses were only considered suspicious if they met both conditions: an ISD > 2 

(indicating very high response variation) AND extreme alternations in more than 60% of 

responses. Using this fine-grained approach to maintain data quality while respecting the clinical 

nature of the GAD-7 and AMI measures, we found that 0% of responses showed potentially 

problematic patterns. 
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Figure S1. Posterior predictive check for model validity. This analysis was conducted with a 

randomly selected subset of 50 participants from the full dataset of 1001 and demonstrated 

strong correlations between observed behaviors and model predictions across three cues: r = 

0.719 for cue1, r = 0.730 for cue2, and r = 0.775 for cue3. All correlations were statistically 

significant, p < 0.0001) 
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Figure S2. Parameter recovery. Following the standard procedure (Piray & Daw, 2020), we 

conducted parameter recovery analyses using synthetic data generated from the Kalman Filter 

model. For each simulation, we generated data for 100 agents, with each subject completing 

three sequences of 300 trials (3 different cues). We ran 50 simulations per agent and analyzed 

recovery using Pearson correlations between true parameters and averaged fitted parameters. 

We obtained reasonable parameter recovery correlations. Pearson correlations were for 𝑣𝑣 = 

0.707, 𝜎𝜎2= 0.671, and β = 0.973.  

 

  



16 

 

 

Figure S3. Split-half reliability of the task.  

We assessed the reliability of our task measures using a split-half approach. The scatter plots 

comparing parameters (before transformation) from the first and second halves of the task are 

presented, along with their corresponding reliability estimates (Pearson’s r values). Reliability 

estimates for the computational measures from the winning computational model were 

computed by fitting split-half parameters within a single model and then using the parameter 

covariance matrix to derive Pearson’s correlation coefficients for each parameter across halves. 

Reliability estimates are reported as unadjusted values (r) and after adjusting for reduced 

number of trials via Spearman-Brown correction (radjust). Statistics reported here based on the 

correlation between transformed parameters between these two halves. Grey lines show lines-

of-best-fit. Overall choice proportion showed fair-to-good reliability (r=0.55, r=0.62, r=0.71 for 

volatility, stochasticity, and β, respectively). The model parameters showed good-to-excellent 

reliability (r = [0.71, 0.77, 0.83] after Spearman-Brown correction).  
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Figure S4. Distinct behavioral patterns associated with apathy and anxiety (plots with all 
data points). (Top panel). Apathy and anxiety correlated positively. (Bottom panels). Apathy 

correlated negatively with switch behaviors, while anxiety correlated positively with switch 

behaviors. Anxious individuals were more sensitive to undesired feedback (no reward) and 

exhibited more switch behaviors than reward feedback.  
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Figure S5. Apathy and anxiety have opposing relationships with exploration and explore 
and exploit state dynamics (plots with all data points) 
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Figure S6. Apathy was positively correlated with stochasticity but negatively correlated 
with volatility estimation. Conversely, anxiety showed a negative correlation with 
stochasticity and a positive correlation with volatility (plots with all data points). 

 

 

 

 

Figure S7. Distinctions in apathy and anxiety on the ratio of volatility to stochasticity.   
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Figure S8. Distinct computational processes between highly anxious and highly 
apathetic individuals.  Further comparisons showed that high anxious individuals had higher 

volatility estimates than those with high apathy (t(449) = 2.98, p=0.003). In contrast, high 

apathetic individuals had higher stochasticity estimates than their high anxiety counterparts 

(t(449) = 2.69, p=0.007), resulting in a higher learning rate among the high anxiety group (t(449) 

= 3.04, p=0.002). **p<0.01; 

 

 

 
 

Figure S9. The ratio of volatility to stochasticity significantly partially mediated the relationship 

between anxiety and exploration after undesired feedback. **p<0.01; ***p<0.001; 
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Figure S10. The strong correlation between P(explore) and P(switch) (r=0.916, p<0.0001). 

They measure separate but related constructs. P(switch) is a model-free measure that is 

sensitive to all changes in choice, regardless of context. P(explore) derives from the HMM, 

and   is constrained by the inferred states, which are sensitive to the temporal structure of 

choices (unlike P(switch)). We expect a high degree of switching in the explore state, and a low 

degree in exploit, but not all switch decisions are necessarily labeled exploratory and not all 

repeat choices are labeled exploit. P(explore) is grounded in a theory of the latent states of 

exploratory decision-making and mathematically related to other properties of the HMM.  
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Figure S11. The low-dimensional space from PCA and tSNE, and the representation for 
P(explore), the ratio of volatility to stochasticity.  

We conducted t-Distributed Stochastic Neighbor Embedding (t-SNE) and Principal Component 

Analysis (PCA) to confirm the manifold. The same eight-dimensional datasets from all 

participants were passed into the R package Rtsne, version 0.16 (available at https://cran.r-

project.org/web/packages/Rtsne/index.html) with default parameter setting as n_component = 2, 

perplexity = 30, min_iter = 1000, metric = ‘Euclidean’. We showed a similar manifold shape as 

UMAP found. Like in the main text, we also mapped model-free indices, as well as parameters 

from HMM onto t-SNE manifolds. The meaning of gradient change here is the same as with the 

UMAP manifold.  The low-dimensional space from PCA is also quite similar to the manifold from 

UMAP and t-SNE. All other correlation results based on t-SNE and PCA scores can be found in 

the tables below. 
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Figure S12. Turning point to divide the manifold into monotonically increasing and 
decreasing group.  

A dimension 1 score of -0.671 marked the most significant negative coefficient, after which the 

relationship between dimension 1 and dimension2 gradually shifted to become positive 
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Figure S13. Non-linear relationship between the ratio of volatility to stochasticity and 
exploration. The results revealed that both the linear and quadratic terms are significant (linear 

term, coefficient = 0.03, SE = 0.005, t(996)=5.69, p<10-8; quadratic term, coefficient = 0.009, SE 

= 13×10-4, t(996)=6.948, p<10-11), indicating a complex, non-linear relationship between the ratio 

of volatility to stochasticity and exploration. Linear and quadratic relationship between Ratio of 

volatility to stochasticity and exploration. 
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Figure S14. UMAP structures for simulated decision strategies. Low-dimensional 

representations of different simulated decision strategies reveal distinct patterns. (A) 

Perfect agent. (B) Random choice. (C) Pure staying. (D) Pure switching shows 

systematic alternation between options. (E) Win-switch-lose-stay (F) Win-stay-lose-

switch. These qualitatively different UMAP structures validate that our dimensionality 

reduction approach captures meaningful variations in decision-making strategies rather 

than imposing artificial structure on the data. 
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TableS1. Detailed exclusion criteria table.  

Exclusion criterion Number excluded % of initial sample 
Incomplete questionnaires 54 3.57% 
Incomplete task data 457 30.22% 
Total excluded 511 33.8% 
Final sample 1001 66.2% 

 

Note: Some participants met multiple exclusion criteria. Numbers represent first criterion met in 

sequential screening. 
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Table S2a. Descriptive statistics for questionnaires (total score for GAD-7 and subscale 
scores for AMI) 

  GAD-7 Apathy Apathy- 

BA 

Apathy- 

SM 

Apathy- 

ES 

Mean 7.17 30.46 10.54 12.69 7.23 

SD 5.54 9.32 5.04 4.80 4.22 

Minimum 0 4 0 0 0 

Maximum 21 64 24 24 24 

 
aGAD-7 = General Anxiety Disorder Screener; Apathy-BA = Apathy behavioral activation; Apathy-

ES = Apathy emotional sensitivity; Apathy-SM = Apathy social motivation. 

Table S2b. Descriptive statistics for questionnaires (mean score for GAD-7 and mean score 
for AMI and its subscales) 

  GAD-7 Apathy Apathy- 

BA 

Apathy- 

SM 

Apathy- 

ES 

Mean 1.02 1.69 1.75 2.12 1.21 

SD 0.79 0.52 0.84 0.80 0.70 
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Table S3. Descriptive statistics for model-free indices 

  Model-free indices 

  Stay % Switch % Win. Stay Lose.shift 

Mean 0.646 0.353 0.861 0.732 

SD 0.180 0.180 0.210 0.204 

 

 

Table S4. Descriptive statistics for HMM indices 

  Model-based indices from HMM 

  Exploitati

on% 

Exploration

% 

Exploit-

Exploit 

Exploit-

Explore 

Explore-

Explore 

Explore-

Exploit 

Mean 0.544 0.455 0.811 0.188 0.818 0.181 

SD 0.243 0.243 0.215 0.215 0.146 0.146 
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Table S5. Model performance 

 All models loglikelihood PXP (protected exceedance 

probabilities) 

BIC 

RW1 -2.1456e+05 0 
440529.648 

RW2 -2.1378e+05 0 
444689.509 

KF -1.7346e+05 1 
364039.334 

VKF -1.8786e+05 0 
398548.485 

 

 

 

Table S6. Statistical details to support Figure 3D and Figure 3E 

measurements High vs Low 
anxiety 

High vs Low 
apathy 

volatility t= 2.82, p=0.005 t= -3.04, p=0.002 

stochasticity t= -2.99, p=0.002 t= 3.20, p=0.001 

learning rate t= 3.21, p=0.001 t= -3.11, p=0.002 
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Table S7. Results from tSNE and PCA 

  t-SNE1 t-SNE2 PCA1 PCA2 

Switch% -0.914*** -0.323*** -0.967*** -0.139*** 

Stay% 0.914*** 0.323*** 0.967*** 0.139*** 

Win.stay 0.713*** 0.608*** 0.832*** 0.513*** 

Lose.shift -0.631*** 0.482*** -0.665*** 0.603*** 

Exploration % -0.912*** -0.250*** -0.937*** -0.016*** 

Exploitation % 0.912*** 0.250*** 0.937*** 0.016 

Exploit-exploit 0.536*** 0.434*** 0.683*** 0.357*** 

Explore-explore -0.484*** 0.111*** -0.449*** 0.199*** 

Explore-exploit 0.484*** -0.111*** 0.449*** -0.199*** 

Exploit-explore -0.536*** -0.434*** -0.683*** -0.357*** 

v/s -0.151*** 0.688** -0.146*** 0.807*** 

 

aall significant P-values reported here survive FDR correction. 

(Original Benjamini & Hochberg FDR procedure, q<0.05)  
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Table S8. 

Linear models statsquadratic, 

apathy 
statsquadratic, 

anxiety 
P(switch)~1+ 

apathy+anxiety+anxiety2+apathy2 

p=0.430 p=0.191 

P(exploration)~1+ 

apathy+anxiety+anxiety2+apathy2 

p=0.354 p=0.087 

v/s ~1+ apathy+anxiety+anxiety2+apathy2 p=0.182 p=0.849 

 
There is no significant quadratic relationship between apathy, anxiety, and exploration, neither 

between these affective states nor the ratio of volatility to stochasticity. 

 
 
 
Table S9. Volatility, stochasticity and their correlations with HMM indices 
 

 P(explore)-

HMM 

P(exploit)-

HMM 

P(exploreexploit) P(exploitexplore) 

volatility 0.151*** -0.151*** -0.152*** -0.056 

stochasticity -0.147** 0.147** 0.112*** 0.030 

(we report correlation coefficients here) 

** P<0.01, ***P<0.001 

all significant P-values reported here survive FDR correction. 

(Original Benjamini & Hochberg FDR procedure, q<0.05) 
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Text S1. Effect size and clinical relevance 
 

While we acknowledge that the observed correlations (r ≈ 0.10-0.16) may appear small based 

on traditional standards, recent methodological discussions in the field of psychological 

research have challenged conventional interpretations of effect sizes, particularly in individual 

differences research. We believe it’s important to consider our findings within this evolving 

context. 

Interpreting effect sizes in individual differences research 

Recent methodological discussions have challenged conventional interpretations of effect sizes 

in psychological research, particularly in the field of individual differences. Gignac and Szodorai 

(Gignac & Szodorai, 2016) conducted a comprehensive meta-analysis that suggests a 

recalibration of effect size interpretation: 

r = 0.10: small but typical 

r = 0.20: medium 

r = 0.30: relatively large 

In light of this, our observed correlations (r ≈ 0.1-0.16) fall within the expected and meaningful 

range for this field of study. We acknowledge that these effects may appear small based on 

traditional standards, but we believe they warrant careful consideration within the context of 

individual differences research. 

Benchmarking effect sizes 

To provide further context, we find it helpful to compare our results with well-established 

psychological phenomena, as suggested by Funder and Ozer (Funder & Ozer, 2019) in their 

impactful paper “Evaluating Effect Size in Psychological Research: Sense and Nonsense”. 

The idea behind using benchmarks to evaluate effect size is that the magnitude of a finding can 

be illuminated by comparing it with some other finding that is already well understood. Some 

relevant comparisons include: 
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Findings Effect size 

Scarcity increases perceived value of a commodity  r = 0.12) 

People attribute failures to bad luck  r = 0.10 

Communicators perceived as more credible are more persuasive r = 0.10 

Resources from (Richard et al., 2003) 

 

 

Additionally, clinical comparisons can provide an intuitive understanding: 

Findings Effect size 

Effectiveness of antihistamines on allergy symptoms  r = 0.11 

Pain relief from nonsteroidal anti-inflammatory drugs  r = 0.14 

Resources from (Meyer et al., 2001) 

 

These comparisons illustrate that our effect sizes are consistent with many important and widely 

accepted findings in psychology and clinical practice.  

Cumulative Effects: Even small effects can have substantial real-world impact  

While individual effects may appear small, we believe it’s important to consider their cumulative 

impact over time. As Funder and Ozer (Funder & Ozer, 2019) argued, seemingly small effects 

can have substantial real-world impact when considered cumulatively.  

Consider a compelling example from a large-scale study that analyzed 2 million financial 

transactions across 2,000+ individuals. The researchers found that the correlation between 

extraversion and holiday shopping expenditure was merely r = .09 (Weston et al., 2019). While 

this effect size might seem negligible for a single consumer, its significance becomes evident 

when considering a department store during the holiday season with thousands of shoppers.  

In our study, this manifests in several ways: 
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Single Decision: While the effect on exploration (r = 0.13) may seem small for a single decision, 

its impact compounds over time. 

Daily Impact: Approximately 20 decisions could be affected. 

Monthly Impact: Around 600 decisions might be influenced. 

Annual Impact: Over 7000 decisions could be shaped by these computational differences 

Clinical significance in neuropsychiatric populations 

We believe the clinical significance of these effects becomes evident when considering their 

impact on daily functioning in neuropsychiatric populations. For example: 

Anxiety: A small bias in volatility estimation could lead to increased environmental scanning, 

more frequent strategy changes, and ultimately contribute to the maintenance of anxiety 

symptoms. 

Apathy: A subtle reduction in exploration might result in fewer novel experiences, reduced 

opportunity detection, and gradual social withdrawal, potentially reinforcing apathetic symptoms. 

 

The Clinical significance of small effects: population Impact and service Implications 

Recent research (Carey et al., 2023) on youth mental health during the COVID-19 pandemic 

illustrates how small statistical effects can translate into substantial clinical outcomes. A 

seemingly modest effect size of d = 0.14 in depression scores led to 160,870 additional cases of 

depression in a population of 10 million youth, resulting in approximately 64,000 new referrals to 

mental health services and a 16% increase in clinical caseload. 

Larger sample size are necessary provide more precise estimates and meaningful clinical 

implications 

As Schönbrodt and Perugini (Schönbrodt & Perugini, 2013) demonstrated through Monte Carlo 

simulations, a sample size approaching 250 is typically needed for stable effect size estimates. 

This aligns with the growing recognition that many published studies, particularly in fields like 

psychology and neuroscience, are underpowered. 

The current incentive structure in academia often rewards statistically significant results, which 

can lead to p-hacking and the inflation of small effect sizes. However, a more robust approach 

would be to incentivize the collection of data from large samples and the honest reporting of 
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effect sizes, even when they are small. This shift is crucial because smaller effect sizes, when 

estimated from larger samples, are more likely to reflect true population parameters. 

Feng et al. (Feng et al., 2022) provided compelling evidence for this in their meta-analysis of 

brain imaging studies. They found that published brain imaging measures accounted for an 

average of only 8% of the variance in affective symptoms, with a wide confidence interval 

(1.6%–23%). Importantly, they noted that this average effect size was likely inflated due to the 

prevalence of small sample sizes in the field. And their findings support the need for large- 

sample clinical studies to robustly capture systematic variance of brain‐affective symptom 

relationships 

These findings underscore the need for large-sample clinical studies, particularly in fields like 

neuropsychiatric research. Larger samples not only provide more precise effect size estimates 

but also allow for the detection of smaller, yet potentially clinically relevant, effects. Moreover, 

they enable more robust statistical modeling to capture the complex relationships between brain 

function and behavior. 

Future Directions 

To further establish clinical utility, we propose: 

Longitudinal studies: Track how computational parameters predict symptom progression, 

examine treatment response patterns, and assess functional outcomes over time. 

Clinical validation: Replicate findings in clinical populations, compare with standard clinical 

measures, and evaluate sensitivity to treatment interventions. 

In conclusion, while we acknowledge that the effect sizes in our study may appear small at first 

glance, we respectfully suggest that their clinical relevance becomes apparent when 

considering cumulative effects, population-level impact, and the specific context of 

neuropsychiatric research. We believe these findings are robust and valid since it’s comparable 

with previous established psychological findings. 
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Text S2. Complementary computational approaches: process model and latent space 
model 

 

Kalman filter model is process model.  

Process models were designed to identify individual differences in uncertainty estimations. 

Specifically, Kalman filter model, which consider the noise in the environment into the learning 

rate and further value updating. The two key noises in Kalman filter is, process noise (volatility), 

which represents how quickly the underlying reward probabilities change over time. And 

observation noise (stochasticity), which represents the randomness in outcomes even when the 

underlying probability stays the same. Together, using process model like Kalman filter, we can 

identify individual differences in certain parameters, (1) differences in process noise 

estimation (volatility), and (2) differences in observation noise estimation (stochasticity). 

 

Hidden markov model is a latent state model.  

HMM is a latent state model to identify trial-by-trial differences in exploration and exploitation. 

Briefly, our approach is based on certain statistical observations about the structure of choice 

sequences. We build on these observations to model exploration and exploitation as the latent, 

unobserved states underlying choices in HMM. Across several published papers, we have 

demonstrated that the HMM offers excellent face validity, better distinguishes quantitatively 

distinct behavioral and neural regimes than any previous method, and ensures that we avoid 

common pitfalls like conflating exploration with errors of reward maximization or noise 

estimation (Chen et al., 2021; Wilson et al., 2021). The HMM also delivers several useful 

quantitative measures that we have found to be related to individual differences. First, the HMM 

allows us to determine whether individual choices are due to the flexible computations 

associated with exploration or the rigid computations associated with exploitation (Ebitz et al., 

2018). This has allowed us to identify individual differences in the rate of exploration with sex 

(Chen et al., 2021) and chronic stress (Kaske et al., 2022). Second, fitting the HMM involves 

estimating two interpretable free parameters. We have previously found that these parameters 

change under catecholamine neuromodulator modulation (Chen et al., 2023; Ebitz et al., 

2019). Furthermore, these parameters explain individual differences in clinical symptoms. Third, 

because the fitted HMM represents a system of equations describing the evolution of behavior 

over time, we can use mathematical analyses to precisely characterize individual differences in 

the dynamics of exploration and exploitation, such as the stability or “stickiness” of each of 
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these behavioral states. This gives an intuitive and succinct “fingerprint” of an individual’s long-

term tendency to explore, exploit, and switch between the two strategies 

 

 

Text S3.  Additional analyses for high and low anxiety/apathy group 

 

To ensure our findings were not dependent on arbitrary cutoffs, we also validated our results 

using a standard deviation approach (±1SD from the mean): 

High anxiety (n=186) vs Low anxiety (n=176) 

High apathy (n=172) vs Low apathy (n=142) 

We constructed linear regression models with three dependent variables (volatility, stochasticity, 

and learning rate), using group level (high vs. low) and the other affective state as predictors. 

For example, for anxiety analyses: volatility ~ High/Low group + Apathy. 

Consistently, apathetic individuals overestimated stochasticity (t(311) = 2.785, p=0.005), 

underestimated the volatility(t(311) = -2.803, p=0.005) , and had lower learning rate(t(311) =  

-2.817, p=0.005) compared to those with low apathy. In contrast, individuals with high anxiety 

levels tended to overestimate volatility (t(359) = 2.377, p=0.017), underestimate stochasticity 

(t(359) = -2.522, p=0.012), and had higher learning rates compared to those with low anxiety 

t(359) = 2.876, p=0.004) .  
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