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Dynamic features within subcortical network serve as 

potential transdiagnostic biomarker 

 

Abstract (199/200 words) 

Identifying biomarkers for multiple mental disorders is an important issue in clinical 

neuroscience. However, traditional case-control neuroimaging studies with static 

functional connectivity may provide little utility in biomarker detection. In current 

study, we aimed to find biomarker across a wide range of psychiatric disorders 

included schizophrenia (SZ, N = 168), bipolar disorder (BD, N = 49), major 

depressive disorder (MDD, N = 100), obsessive-compulsive disorder (OCD, N = 56), 

by using resting-state fMRI and dynamic functional connectivity (FNC) approach. We 

mainly focused on the dynamic features within subcortical network, the key site in the 

pathophysiology of psychiatric disorders and important hub to mediate large-scale 

cortical communication. Dynamic FNCs were clustered into four states by k-mean 

clustering. State 4, with increased functional connectivity in subcortical network 

(basal ganglia and thalamus), showed significant group differences. Healthy controls 

(HC, N = 210) dwelled significantly longer than other patients in this state. SZ 

engaged longer time than OCD, BD, and MDD also have more dwell time than OCD 

in state 4. Finally, multi-class support vector machine based on dynamic features of 

subcortical network successfully classified MDD and SZ from other populations. 

Together, our study may provide a new robust biomarker across mental disorders. 

 

Keywords: bipolar disorder, major depressive disorder, schizophrenia, 

obsessive-compulsive disorder, transdiagnostic study, dynamic functional connectivity, 

independent component analysis, subcortical network, basal ganglia, thalamus 
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Introduction 

The desire to classify mental disorders in objective and precise way has its roots in 

classical antiquity. From Galen’s typology to modern scientific approaches like 

ICD-11 (International Classification of Diseases, by WHO) and DSM-V (Diagnostic 

and Statistical Manual of Mental Disorders, by APA), but completely understanding 

mental illnesses can still be challenging. One problem might be, diagnosis and 

classification are based on subjective symptoms and visible signs, and the 

co-morbidity also hinder the progress to make precise clinical decisions (Goldberg, 

2015; Clark et al., 2019). Thus, the idea behind precision medicine has rapidly come 

to psychiatry (Insel and Guthbert, 2015; Fernandes et al., 2017), which is called 

“precision psychiatry”. One of the main goals of precision psychiatry is to optimize 

diagnosis and treatment strategies. Critical to this goal is finding the biomarker. 

Traditional paradigm for detecting biomarker in field of psychiatry is case-control 

design, where the case refers to specific mental disorders, while the control represents 

healthy participants (Lewis and Pelosi, 1990). However, biomarkers identified in 

case-control neuroimaging studies lack disorder specificity (Sha et al., 2018), and 

cannot reveal the shared or distinct patterns among different mental disorders. Instead, 

in order to acquire more clear classification and recognition for complex mental 

illnesses, the field needs a step to transition to transdiagnostic designs, that is, 

multiple disorders should be considered concurrently (Parkes et al., 2020).  

In the current study, our main goal is to find an effective biomarker in transdiagnostic 

design for a range of diagnostic categories, including schizophrenia (SZ), bipolar 

disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder 

(OCD), by using resting-state functional magnetic resonance imaging (rs-fMRI). 

rs-fMRI can represent intrinsic architecture of neural networks and has been 

recognized as a powerful tool in clinical neuroscience (Fox and Greicius, 2010). More 

specifically, we aimed to investigate: 1) whether there will be a neural biomarker (e.g., 
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network) to reveal the difference across these disorders; 2) if so, how distinct would 

be between any pair of psychiatric disorders on the characteristics of this biomarker. 

Mounting evidence suggests that deficits underlying a group of high-order and 

large-scale brain networks such as default mode network (DMN), cognitive control 

network (CC) are critical mechanisms of mental disorders (e.g., Yan et al., 2019; 

Bakers et al., 2014). This pervasive “corticocentric” view reflected in a large number 

of studies (Bell and Shine, 2016) which focused on disruptions in neocortical 

networks may neglect the importance of subcortical structures. Subcortical anatomical 

areas (major sites: basal ganglia and thalamus) affect fundamental functions such as 

motivation and emotion (Panksepp, 1998). Dysfunctions in subcortical structures 

cause apathy, depression and psychosis (Salloway and Cummings, 1994; Koshiyama 

et al., 2018) and be harmful for social adaptation (Schultz et al., 2019). Indeed, 

subcortical network is key component in the pathophysiology of psychiatric disorders. 

Especially some key subcortical structures, such as basal ganglia and thalamus, play 

important roles in supporting large-scale network communication and integrating 

diverse signals from cortex (Crossley et al., 2014).  

Here, we hypothesized that the subcortical network would be potential biomarker 

across multiple mental disorders and would treat it as our main research goal. 

Recently, one large-scale meta-analytic study has found the patterns of dysfunction in 

the subcortical system (e.g., basal ganglia, thalamus) were common across psychiatric 

disorders compared to healthy controls (Sha et al., 2018). Other qualified case-control 

studies revealed structural abnormalities within subcortical network in bipolar 

disorder (Hibar et al., 2016), obsessive-compulsive disorder (Kong et al., 2020), major 

depressive disorder (Schmaal et al., 2016), as well as schizophrenia (Gur et al., 1998). 

One task-based fMRI study has implicated the functional connectivity of subcortical 

brain regions (amygdala-striatum pathway) can distinguish depressed mood phase 

from manic phase in bipolar adults (Man et al., 2019). Mamah et al. conducted shape 

analysis in subcortical and found few similarities in surface deformation patterns 
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between schizophrenia and bipolar disorder (Mamah et al., 2019). But these 

case-control design studies cannot give direct evidence that whether the features of 

subcortical network can be different among pairs of psychiatric population under 

direct comparisons, and only a small number of empirical studies were in 

transdiagnostic approach with large-sample and multiple psychiatric disorders. Thus, 

this current investigation is necessary and urgent. 

An increasing number of studies provided solid evidence that the brain is a dynamic 

system, rather than static one on a micro-time scale (Calhoun et al., 2014; Preti et al., 

2017). Dynamic functional connectivity (dynamic FNC), which is implemented by the 

sliding window method (Liao et al., 2017; Liu et al., 2018), is an ideal approach to 

characterize the dynamic nature of brain (Calhoun et al., 2014). And it also be useful 

for detecting and predicting diseases, such as Parkinson diseases (Fiorenzato et al., 

2019), schizophrenia (Damaraju et al., 2014), bipolar disorder (Rashid et al., 2014), 

and major depressive disorder (Wu et al., 2019). Given its importance and efficacy for 

characterizing diseases, a few transdiagnostic studies began to adopt this method to 

explore dynamic FNC characteristics among large-scale brain networks (Reinen et al., 

2018; Li et al., 2020). But these studies had relatively small sample sizes or studied 

limited diseases (i.e., SZ and BD or SZ, MDD and BD).  

Here, we configure our transdiagnostic design with sliding-window approach (Allen 

et al., 2014; Calhoun et al., 2014) to portray the features of dynamic functional 

connectivity within subcortical network among a range of psychiatric disorders 

including BD (n=49), MDD (n=100), OCD (n=56), SZ (n=168), and healthy controls 

(n=210). We first compared the temporal properties between healthy and clinical 

populations and then conducted pair-wise comparisons among all kinds of mental 

illnesses. To exclude the possibility that some results might be attributed to treatment 

effects, the current study only recruited medication-naïve individuals suffering from 

four psychiatric disorders. Of note, all participants’ data were collected by the same 

scanner and acquisition sequence to ensure the data comparability. 
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Method 

Ethic approval.  

The current study was carried out in accordance with principles of the Declaration of 

Helsinki and approved by a local Research Ethics Committee of the Second Affiliated 

Hospital of Xinxiang Medical University (Xinxiang, China). All participants provided 

written informed consent after the experimental procedure had been fully explained 

and were informed of their right to withdraw at any time during the study. 

Participants.  

We collected resting-state functional magnetic resonance imaging (fMRI) data from 

583 individuals, including 210 healthy controls (HC, free of current or a history of 

psychiatric disorders) and 373 patients who were diagnosed with bipolar disorder (BD, 

N = 49), major depressive disorder (MDD, N = 100), obsessive compulsive disorder 

(OCD, N = 56), or schizophrenia (SZ, N = 168). All participants were screened using 

non-structured interviews based on the diagnostic criteria of the DSM-IV by 

experienced psychiatrists from the Second Affiliated Hospital of Xinxiang Medical 

University (Xinxiang, China). Thirty-eight participants (MDD = 2, OCD = 4, SZ = 26, 

HC = 6) were excluded from the subsequent analyses due to significant head motion 

(above 2.5 mm or 2.5° in any directions, see Data preprocessing for more details). 

Thus, data from 545 participants were included in the formal data analysis: 49 with BD, 

98 with MDD, 52 with OCD, 142 with SZ, and 204 HCs. Demographics information 

and clinical characteristics of included participants (N = 545) were shown in Table S1.  

Neuropsychological and neuropsychiatric assessment.  

We asked participants to complete questionnaires to assess related symptoms of each 

disorder. Psychiatry symptoms of SZ patients were obtained using the Positive and 

Negative Syndrome Scale (PANSS) (Kim et al., 2012). BD and MDD patients 

completed the Beck Anxiety Inventory (BAI) (Beck et al., 1988) and Beck Depression 

Inventory (BDI) (Beck et al., 1961) assess their affective symptoms. The Yale-Brown 

Obsessive-Compulsive Scale (Y-BOCS) (Goodman et al., 1989) was employed to 
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assess the obsessive thoughts and compulsive behaviors of OCD patients. We 

calculated the total scores of each questionnaire and reported them in Table S1. 

 

Image acquisition.  

Functional brain images were acquired using a 3-Tesla Siemens Trio scanner at the 

Second Affiliated Hospital of Xinxiang Medical University (Xinxiang, China). Blood 

oxygen level-dependent (BOLD) gradient echo planar images (EPIs) were obtained 

using a 12-channel head coil [64 × 64 × 33 matrix, voxel size = 3.44 × 3.44 × 4 mm3, 

repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle = 70°, field of 

view (FOV)=256 × 256mm2]. A high-resolution T1-weighted structural image was 

subsequently acquired (256 × 256 × 144 matrix with a spatial resolution of 1 × 1 × 1 

mm, TR = 2530 ms, TE = 3.37 ms, inversion time (TI) = 1100 ms, flip angle = 70°). 

 

Data analysis. 

Data preprocessing. The fMRI data was preprocessed using SPM12 (Wellcome Trust 

Centre for Neuroimaging, London). Similar to previous studies (Hampson et al., 2002; 

Long et al., 2008), the first 10 functional images were discarded to avoid initial 

steady-state problems. Remaining images were spatially realigned for head motion 

correction, and corrected for slice acquisition temporal delay. Functional images were 

then co-registered to each participant’s segmented gray matter T1-weighted image, 

spatially normalized to a common the Montreal Neurological Institute (MNI) space, 

and resampled into 3 × 3 × 3 mm3 voxels. Finally, all functional images were spatially 

smoothed with an isotropic 4mm FWHM Gaussian kernel. 

 

Group independent component analysis (ICA). ICA provides a blind and objective 

separation of spatially independent components with potential temporal correlations. 

Here we decomposed all preprocessed data into functional components of unique time 

course profiles, using group ICA implemented in the GIFT toolbox 

(http://mialab.mrn.org/software/gift/) (Calhoun et al., 2001a). First, we performed a 

subject-specific principal component analysis (PCA) for data reduction. Similar to 
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previous study (Rashid et al., 2016; Allen et al., 2014), 120 principal components 

were remained for each participant. Then at a group level, we employed the 

expectation-maximization (EM) algorithm (Roweis, 1998) in the GIFT toolbox to 

decompose the resting-state data into 100 group independent components 

(Abou-Elseoud et al., 2010), we repeated the Infomax ICA algorithm (Bell and 

Sejnowski, 1995) for 20 times in ICASSO (Himberg et al., 2004) to ensure the 

reliability and stability. Subject-specific spatial maps and time-courses were then 

estimated by the back-reconstruction approach (Calhoun et al., 2001b). We then 

identified 50 meaningful independent components from the 100 group independent 

components based on the following criteria (Allen et al., 2014; Rashid et al., 2016): 1) 

whether the peak activation coordinates of the functional components were primarily 

located in grey matter; 2) whether the component showed low spatial overlap with 

white matter structures, vascular, ventricular, edge regions corresponding to artifacts.  

In these remaining components, 38 were cortical, 5 were cerebellar. We identified 

seven components (Figure 1A and Figure S1) that were localized in thalamus and 

basal ganglia. These seven components were subsequently used to construct 

subcortical network based on the templates provided in previous research (Ystad et al., 

2010; Allen et al., 2014). Then the time-courses of the seven components were 

detrended, despiked and low-pass filtered with a high-frequency cutoff of 0.15 Hz to 

remove remaining noise sources (Allen et al., 2014). We also regressed out the six 

parameters of head movement. 

 

Dynamic functional connectivity. We employed a sliding temporal window approach 

to examine dynamic functional connectivity (FNC) of the resting-state data. This 

analysis was conducted by the dynamic FNC network toolbox in GIFT. In line with 

previous work (Shirer et al., 2012; Allen et al., 2014), the time-course of each 

independent component was divided into 200 windows, with each window of width = 

30 TR and sliding step = 1 TR. We estimated covariance using the regularized inverse 

covariance matrix (Varoquaux et al., 2010; Smith et al., 2011) to avoid noise caused 

by covariance estimation using time series of shorter length. In addition, a L1 norm 
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constraint on the inverse covariance matrix was applied to enforce sparsity in the 

graphic LASSO framework (Friedman et al., 2008).  

 

Clustering analysis. A k-means clustering algorithm (Lloyd, 1982) was applied on 

windowed FNC matrices to identify the reoccurring FNC patterns (i.e., FNC states) 

across participants. The Manhattan distance matric, shown to improve the 

effectiveness of k-means clustering algorithm for high-dimensional data (Aggarwal et 

al., 2001), was applied to assess the similarity between different windows of FNC. A 

cluster validity analysis (i.e., the elbow method, Allen et al., 2014) was then 

conducted on the exemplars of all participants to obtain the optimal number of 

clusters. All clustering analyses were iterated 5 times in GIFT to produce reliable 

results. As a result, we determined four clusters (k = 4) as the optimal number of 

clusters.  

 

State analysis and Graph theory analysis. For each state, we calculated the mean 

dwell time (i.e., the number of consecutive windows belonging to the same state) and 

frequency (i.e., the number of windows of each one state). We also calculated the total 

number of transitions from one state to a different state. The mean dwell time, 

frequency, and the number of transitions reflect the temporal properties of the 

dynamic FNC states. Moreover, we extracted the FNC strength within the subcortical 

network for each window and averaged the FNC strength across the windows 

belonging to the same state to index the FNC strength of each state. 

Graph metrics for the FNC of each state were also calculated for further 

understanding. We calculated global efficiency and local efficiency by using the graph 

theoretical network analysis toolbox implemented in the Brain Connectivity Toolbox 

(Rubinov and Sporns, 2010). These two indices can be used to elucidate the 

information flows efficiency at global and local level. Higher network efficiency 

(globally and locally) indicated stronger information processing ability (Rubinov and 

Sporns, 2010; Latora and Marchiori, 2001). Technically, global efficiency was 

computed as the average inverse shortest path length in the network (i.e., in the 
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binary matrix which had been defined from subcortical network), and local 

efficiency was estimated as the global efficiency calculated on node 

neighborhoods (Latora and Marchiori, 2001). 

Moreover, given that the matrices of each state were thresholded repeatedly, we 

calculated the area under the curve (AUC) for each state to index a 

threshold-independent assessment for the topological property of the networks.  

For each index mentioned above, we first performed one-way analysis of covariance 

(ANCOVA), with Group (HC vs. patients) as factor, and with age, gender and 

education as covariates to investigate the general main difference between patients 

and healthy controls. Then we aimed to estimate the group difference among the four 

kinds of psychiatric patients with ANCOVA (with age, gender and education as 

covariates). To further reveal the distinct or shared results pattern between specific 

patient groups, we subsequently conducted Post hoc analyses. Multiple comparisons 

were corrected by false-discovery rate (FDR, p < 0.05). 

 

Network-based statistics. To further anchor the specific pairs of brain regions wherein 

functional connectivity within subcortical network showed difference between healthy 

control and patients, as well as among all mental disorders, we adopted network-based 

statistic (NBS) approach (Zalesky et al., 2010; t-threshold: t > 3.1; permutation: 5000 

randomizations). The purpose of the NBS here is to identify any potential connected 

structures that are significantly different between any pairs of groups. For each 

participant, an N×N connectivity matrix was constructed in the same way mentioned 

above. Then the matrix was transformed to N (N - 1)/2 unique pairwise associations, 

and the test statistics calculated independently adopting the values stored in each cell 

of the matrix. 

 

Classification analysis based on dynamic FNC. To classify different psychiatric 

disorders, we conducted classification analysis using the dynamic FNC matrix 

(Rashid et al., 2016). We built a regression matrix of 4 disorder groups (i.e., BD, 

MDD, OCD, and SZ) and four states (derived from the dynamic FNC clustering 
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analysis). We then regressed out the windowed FNC matrices at each time window 

using the regression matrix. This analysis thus resulted in 16 β coefficients for each 

time window for each participant. We averaged β coefficients across all time windows 

and saved 16 mean β coefficients for each participant, serving as the dynamic FNC 

features for further classification analysis. For the dynamic FNC features-based 

classification, we employed a supervised machine learning method, i.e., multi-class 

support vector machine (R, e1071 package; Meyer et al., 2014). We used a standard 

10-fold cross-validation to estimate the generalization error of the classifier. The data 

was randomly divided into 10 subgroups, 9 of which was used to train classifier to 

predict the left one subgroup, and this procedure was repeated for 10 times. The 

classification accuracy was calculated by using the correctly classified label dividing 

by total number of the sample. 
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Results 

Subcortical network and its functional connectivity in four states. 

Spatial map of subcortical network identified using the group independent component 

analysis was shown in Figure 1A. Independent components were grouped in 

subcortical network based on their anatomical and presumed functional properties: 

subcortical network (components: 2, 20, 55, 59, 69, 71, 94). And our subcortical 

network was mainly formed by basal ganglia (BG) and thalamus (Figure S1), which 

are recognized as the critical elements in subcortical structure (Salloway and 

Cummings, 1994; Bell and Shine, 2016). We adopted a k-means clustering algorithm 

to cluster dynamic FNC from all subjects into four distinct connectivity states. Figure 

1B shows the cluster centroid and the percentage of occurrences of each state 

(arranged in the order of emergence). These matrices reflect the functional 

connectivity within subcortical network. 
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Figure 1. Composite map of the subcortical network. And the pipeline of dynamic functional 

connectivity and clustering analyses.  

(A) The subcortical network (SC, including 7 components) was derived from group spatial 

independent components analyses among all participants. (B) First, for each participant, the 

dynamic functional connectivity (dynamic FNC) matrices are estimated on each sliding window 

(200 windows) of a set of components within the subcortical network. Then we applied k-means 

clustering algorithm on the dynamic FNC matrices across all subjects to assess the reoccurring 

FNC’s states. Optimal number of states was determined by elbow method. We showed the 

averaged FNC pattern and the corresponding total number of windows in each state, percentage of 

each occurrences was presented in parentheses. The color bar represents the z value of FNC. 

 

Different temporal properties between healthy control and patients in subcortical 

network 

We first compared the mean dwell time between healthy control (HC) and all patients 
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(i.e., BD, MDD, OCD and SZ) in each state (Figure 2). Using one-way analysis of 

covariance (ANCOVA), with Group (HC vs. patients) as factor, and with age, gender 

and education as covariates, we found that the patients had higher mean dwell time 

than healthy controls in state 1 (patients: 62.868 ± 39.949 vs. healthy controls: 55.289 

± 40.120; F(1,500)=4.814, p = 0.029 , η2 =0.010) and state 2 (patients: 66.642 ± 

56.247 vs. healthy controls: 53.897 ± 57.016; F(1,500)=9.778, p = 0.002, η2 =0.019). 

In state4, the heathy controls (41.455 ± 58.477) showed significant higher mean dwell 

time than patients (26.466 ± 40.703; F(1,500)=18.121, p < 0.001, η2 =0.035). No 

significant difference was found in state 3 (F(1,500)=1.333, p = 0.249, η2 = 0.003). 

We did not observe significant difference on the number of transitions between 

healthy controls and patients (F(1,500)=0.158, p = 0.691, η2 < 0.001). Multiple 

comparisons were corrected by false-discovery rate (FDR), p < 0.05. All contrasts 

remained the same after FDR correction. Results on fraction of time was similar with 

the mean dwell time (see Table S2). 

 

 
Figure 2. Mean dwell time of dynamic FNC states and number of transitions between 

healthy control and patients. (A, B) In state1 and state2, patients engaged more time than 

healthy control did. (C) In state3, no difference was found between healthy control and patients. 

(D) In state4, patients engaged less time than healthy control did. (E) No significant difference on 

number of transitions between healthy control and patients. Multiple comparisons were corrected 

by FDR, p < 0.05. All analyses reported controlled age, gender and education. (Error bars 

represent standard error. p<0.05*, N.S, not significant). HC, healthy controls;  

 

Distinct temporal properties among patients in subcortical network in state 4. 

Next, we aimed to investigated which dynamic FNC state would show distinct 

temporal properties among the four groups of patients (Figure 3). The follow-up 
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analyses by adopting one-way analysis of covariance (ANCOVA), with Group (BD vs. 

MDD vs. OCD vs. SZ) as factor, and with age, gender and education as covariates on 

mean dwell time showed significant main effect of Group in state 4 (F(1,304)=5.937, 

p = 0.001, η2 = 0.056). Post hoc analyses revealed that the SZ were associated with 

higher dwell time than BD (SZ vs. BD, F(1,162)=9.820, p = 0.002, η2 = 0.059) and 

OCD (SZ vs. OCD: F(1,165)=12.847, p < 0.001, η2 = 0.074), and MDD patients 

showed more dwell time than OCD patients (F(1,141)=9.335, p = 0.003, η2 = 0.064). 

No differences were found between BD and MDD (F(1,138)=0.900, p = 0.344, η2 = 

0.007), neither for BD and OCD (F(1,92)=1.544, p = 0.217, η2 = 0.017), SZ and MDD 

(F(1,211)=2.491, p = 0.116, η2 = 0.012). Interestingly, we also observed significant 

main effect of Group on the number of transitions (F(1,304)=5.484, p = 0.001, η2 = 

0.052). Post hoc analyses revealed that the BD patients had higher number of 

transitions than MDD (F(1,138)=10.549, p = 0.001, η2 = 0.073) and OCD 

(F(1,92)=11.799, p = 0.001, η2 = 0.118), and the SZ patients also had more transitions 

among the four dynamic FNC states than OCD (F(1,165)=4.769, p = 0.030, η2 = 

0.029). No other contrasts showed significant differences (i.e, BD vs. SZ, SZ vs. 

MDD, MDD vs. OCD; all p > 0.06). Multiple comparisons were corrected by 

false-discovery rate (FDR), p < 0.05. All contrasts remained the same (except the 

comparison of SZ vs. OCD became marginally significant, pcorrected= 0.06) after FDR 

correction. Results on fraction of time was similar with the mean dwell time (see 

Table S3). 

 

 

Figure 3. Mean dwell time of dynamic FNC states and number of transitions among all 

patients. 

(A, B, C) In state1, state2, and state3, no difference was found among the four groups of patients. 

(D) In state4, the main effect of Group was significant. Specifically, SZ patients engaged higher 
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dwell time than BD and OCD patients, MDD patients showed larger dwell time than OCD patients. 

No significant results were found on other contrasts. (E) The number of transitions among four 

groups of patients revealed significant main effect of group. BD patients showed more transitions 

than MDD and OCD patients, moreover, SZ patients had more transitions among the four states 

than OCD did. No significant results were found on other contrasts. Multiple comparisons were 

corrected by FDR, p < 0.05. All analyses reported controlled age, gender and education year. 

(Error bars represent standard error. p<0.05*, p<0.01**, N.S, not significant). 

 

Exploring the meaning of in state 4 

Interpreting the meaning of dynamic FNC states is essential. Consistent with previous 

studies, we then explored the network properties in the dynamic FNC states (Allen et 

al., 2014; Wu et al., 2019).  

From the results mentioned above, the state 4 was the only state which showed 

significant difference between HC and patients, as well showed difference among the 

four groups of patients. We then explore the meaning of state 4. We focused on three 

indices which have been frequently described in previous research (Wu et al., 2019; 

Shi et al., 2018) including functional connectivity strength, global efficiency and local 

efficiency within certain brain networks. Specifically, we conducted two kinds of 

analyses. First, we investigated the difference between state 4 and other three states, to 

reveal the uniqueness of state 4 (Figure 4). Then we delineated the network properties 

including functional connectivity strength, global efficiency and local efficiency 

within subcortical network in state 4 (Figure 5), to show what exactly the difference in 

dwell time windows may indicate. 

To make our first goal, we directly compared the differences among all states on the 

three interested indices. One-way analysis of covariance (ANCOVA), with Group (the 

four states) as factor, and with age, gender and education as covariates showed 

significant main effect of group on functional connectivity(F(1,126)=11.978, p < 

0.001, η2 = 0.222), as well as significant main effects of group on global efficiency 

(F(1,126)=4.632, p = 0.004, η2 = 0.099), but no significant main effect was found on 

local efficiency (F(1,126)=1.988, p = 0.119, η2 = 0.045). We further investigated the 
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group differences among the four states on functional connectivity and global 

efficiency. Post hoc analyses on functional connectivity showed that the FNC and 

global efficiency in subcortical network in state 4 was higher than any other states (all 

p < 0.001).  

 

Figure 4. Uniqueness in state 4. 

(A, B) Functional connectivity and global efficiency within subcortical network showed 

significant main effect, and the state4 was associated with higher FNC and global efficiency than 

other three states. (C) No main effect was found on local efficiency. (Error bars represent standard 

error. p<0.05*, p<0.01**, p<0.001***). 

 

For our second purpose, we first examined the difference between HC and patients on 

the three indices mentioned above. One-way analysis of covariance (ANCOVA), with 

Group (HC vs. patients) as factor, and with age, gender and education as covariates 

showed significant main effect of group on functional connectivity(F(1,284)=17.872, 

p < 0.001, η2 = 0.060), global efficiency (F(1,284)=8.869, p = 0.003, η2 = 0.031) and 

local efficiency (F(1,284)=4.863, p = 0.028, η2 = 0.017). That the HC revealed higher 

functional connectivity, as well as global, local efficiency than patients. Then we 

investigated the group difference among the four patients. The results revealed that 

the main effect of Group (BD vs. MDD vs. OCD vs. SZ) in ANCOVA was significant 

only on functional connectivity strength (F(3,165)=3.028, p=0.031, η2 = 0.054), 

neither on global nor local efficiency (all p>0.140). Post hoc analyses on functional 

connectivity showed marginally significant difference between BD and SZ (BD < SZ; 

F(1, 67)=3.489, p=0.065, η2 = 0.035), as well as OCD and SZ (OCD < SZ; F(1, 

97)=3.639, p=0.060, η2 = 0.038). The difference between MDD and OCD was 
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significant (MDD < OCD; F(1,63)=7.963, p = 0.006, η2 = 0.119). Contrast between 

MDD and OCD remained significant after FDR correction.  

 

 
Figure 5. Network properties in state 4. 

(A, B, C) Healthy controls revealed larger functional connectivity strengths, higher global and 

local efficiency than patients. (D) Functional connectivity among four groups of patients revealed 

significant main effect. (E, F) No significant main effect among the four groups on global 

efficiency, nor on the local efficiency. (Error bars represent standard error. p<0.05*, p<0.01**, 

p<0.001***, N.S, not significant). 

 

Further, the network-based statistical (NBS) analysis indicated that in state 4, healthy 

controls revealed stronger connectivity both within basal ganglia nuclei (included 

caudate nucleus, ventral striatum, putamen, nucleus accumbens; these components 

were depicted in yellow), and between thalamus (depicted in grey here) and basal 

ganglia elements (Figure 6A). Similar results were also identified in SZ vs. BD 

comparisons (Figure 6B). The chord diagram presented here was created by R 

package circlize (https://github.com/jokergoo/circlize). No significant differences were 

detected in other pairs of comparisons. 



 

 18 

 

Figure 6. Results of network-based statistics in state 4. 

(A) Healthy controls have stronger connections within basal ganglia nuclei, and thalamus- 

basal ganglia. (B) SZ patients showed more connections within thalamus, basal ganglia 

nuclei, as well as the stronger inter-brain communication between thalamus and basal 

ganglia. 

 

Classification results based on dynamic FNC features 

The multi-class SVM based on dynamic FNC approach showed classification 

accuracy of 22.44% for BD, 55.10% for MDD, 23.07% for OCD, and 85.92% for SZ 

(Figure 7B). Here, the Venn diagram were generated with R package venneuler 

(Wilkinson, 2012). The average accuracy expected due to chance is around 25%. Thus, 

the trained classification model generally classified MDD and SZ well. 
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Figure 7. The pipeline of classification approach and the results of classification. 

(B) An overview of classification approach for classification. We first extracted the averaged 

FNC pattern for each state for each patients’ group, respectively. Then we performed 

Pearson correlation between the FNC in each window and the FNC pattern in all states 

among all groups. These procedures ended up with 16 averaged features for each 

participant.  

(C) Next, we adopted the similar procedure and multi-class SVM to classify the four kinds of 

patients. Results showed the model performed well for classifying MDD and SZ patients 

(above chance level, 25%). Venn diagram revealed the how the wrong classified labels 

allocated at other kind of patients. 
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Default mode network and cognitive control networks failed to show difference 

among the patients. 

We also investigated the whether the dynamic FNC states in default mode network 

(DMN) and cognitive control network (CC), which were important for mental 

disorders (Baker et al., 2019), would reveal difference between healthy controls and 

patients, as well among the patients. The DMN and CC (see Figure S2) were 

identified using the group independent component analysis.  

Consistent with our previous analyses on subcortical network, we first examined the 

group difference between healthy controls and patients, then examined the group 

difference among the four kinds of patients. However, all states in DMN failed to 

show difference between HC and patients, as well as among patients (all p > 0.07 after 

FDR correction; Table S4). Likewise, the cognitive control network neither reveal 

distinct dynamic FNC properties between HC and patients, nor among the four groups 

of patients (all p >0.10 after FDR correction; Table S5). 
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Discussion 
This study adopted ICA and dynamic functional connectivity (FNC) approaches to 

capture the difference in subcortical network dynamic FNC features in transdiagnostic 

way. Using advanced clustering algorithm, we defined four reoccurring FNC states 

during resting-state scanning across entire populations. Wherein the state 4 exhibited 

significant differences, between healthy control and all mental disorders, as well as 

among the four groups of patients. Specifically, patients generally showed less dwell 

time in state 4 than healthy controls. Post hoc analyses identified that schizophrenia 

(SZ) engaged higher dwell time in state 4 than obsessive-compulsive disorder (OCD) 

and bipolar disorder (BD). And the major depressive disorder (MDD) revealed longer 

dwell time than OCD in state 4. Intriguingly, adopting multi-class support vector 

machine based on dynamic FNC within subcortical network generally showed ideal 

classification accuracy for MDD and SZ. These findings begin to delineate the 

dynamic properties of one of the most critical neuropsychiatric related brain networks, 

and open new avenues for developing potential biomarkers for a wide range of mental 

disorders.  

Accumulating evidence suggests that basal ganglia (BG) and thalamus play a critical 

role in supporting the convergence of afferent information from cortical system. As 

detailed in the following, projections from cortical structures terminate in the striatum 

(key input structure of BG), then the output is channeled back to cerebral cortex via 

thalamus. This procedure depicted the general organization of cortico-basal 

ganglia-thalamic (CBG) loop, and widely affected diverse cognitive process including 

emotion (Pessoa, 2016) and cognitive control (Furman et al., 2011), which may form 

the backbone of the pathophysiology of several mental disorders. Furthermore, basal 

ganglia and thalamus were identified as important affected hub regions in large-scale 

brain networks (van den Heuvel and Sporns, 2011; McColgan et al, 2015), and served 

as major pathological foci in a range of psychiatric and neurological disorders 

(Crossley et al., 2014). In the current investigation, basal ganglia and thalamus 
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consisted our subcortical network. State 4 was characterized by stronger functional 

connectivity strength and higher global communication efficiency than other three 

states. Compared to healthy controls, all patients engaged relatively less dwell time in 

this state, as well as weak functional connectivity strength. More specifically, the 

network-based statistical (NBS) analysis further suggested the healthy controls had 

increased connection between basal ganglia and thalamus than patients did. These 

findings may indicate that decreased integration between basal ganglia and thalamus 

would be a transdiagnostic feature when compared to healthy populations. 

Both SZ and BD patients have symptoms (e.g., acute mania) that overlap and share 

environmental risk and genetic factors (Lichtenstein et al., 2009). Distinguishing SZ 

from BD patients is challenging and difficult to clinicians. Interestingly, we found that 

SZ patients engaged more time in state 4 than BD patients. Furthermore, SZ patients 

revealed stronger functional connectivity strength within basal ganglia, thalamus, as 

well as enhanced connections between these two critical subcortical systems. Previous 

structure MRI study (Mamah et al., 2016) found SZ patients showed enlargement of 

basal ganglia than BD patients. Combing our current findings, we may infer the 

abnormalities in subcortical network, both in structure and function approach, could 

become solid biomarkers to diagnose these two types of complex mental illnesses. 

A large number of studies indicated that the cortico-striatal-thalamic loop was 

important for understanding the underlying brain mechanisms of MDD and OCD 

patients (see review, Gunaydin and Kreitzer, 2016). Traditionally, the OCD patients 

can be characterized the dysfunction within orbitofronto (OFC)-striatal-thalamus loop. 

And MDD patients, who generally show reduced sensitivity to reward, which was 

mainly attributed to the dysfunctional dorsal lateral prefrontal cortex 

(dlPFC)-striatal-thalamus loop (Peters et al., 2016). One representative empirical 

study (Figee et al., 2011) suggests that the OCD patients also showed attenuated 

neural activity in basal ganglia structure (i.e., NAc) during reward anticipation. We 

found that MDD patients spent significantly more time in state 4 than OCD patients, 
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in subcortical network. Based on our current results and previous findings, we may 

keep cautious to infer that the different engaged time in dynamic period with higher 

connection strength between basal ganglia-thalamus could distinguish the potential 

overlap between MDD and OCD patients in negative thoughts processing (Fallucca et 

al., 2011), which is highly related to reward sensitivity.  

Likewise, we detected significant difference between SZ and OCD patients in state 4. 

To our knowledge, limited research directly compared these two disorders (but see 

Kang et al., 2008). Kang et al. conducted three-dimensional shape deformation 

analysis on thalamic nuclei to clarify the different features between SZ and OCD 

patients (gender-matched, age-matched), however, they did not find significant group 

difference. Our current investigation, instead, classified SZ patients from OCD 

patients by performing dynamic FNC analysis within basal ganglia-thalamus 

connected network, may fill the important gap that effectively distinguishing SZ from 

OCD patients in clinical neuroscience. 

Although we did not observe significant difference on transition numbers within 

subcortical network between healthy controls and patients. Some interesting results 

from comparisons among patients need to be briefly discussed here. BD patients 

switched more frequently than MDD did in subcortical between distinct states. This 

pattern may be consistent with the pathological mood instability and fluctuations of 

bipolar disorder (Geddes et al., 2013).  

The current study has several notable strengths. First, a lot of previous clinical 

neuroimaging studies mainly focused on the deficits in large-scale cortical network 

but ignored the importance of subcortical regions, like the basal ganglia and thalamus, 

which serve as the major sites to support large-scale network integration (McColgan 

et al, 2015) and widely affected multiple mental disorders (Crossley et al., 2014). 

Thus, our findings yield unique insight into the role of subcortical structures in 

understanding the pathological features of psychiatric disorders. Second, we adopted 

transdiagnostic design with large sample and multiple mental illnesses to avoid the 
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potential bias and unstable conclusions in previous psychiatric studies with small 

samples, and traditional case-control design. Third, using advanced dynamic 

functional connectivity framework, we could obtain the shared and distinct 

instantaneous characteristics between different disorders in more sensitive and robust 

way. The effects reported in the present investigation cannot be explained by 

medication and illness chronicity—two common confounds in psychiatric 

neuroimaging, since all patients were in their first episode and remained 

medication-naïve at the time of scanning. Furthermore, all five groups were scanned 

using the same MRI scanner and image acquisition parameters, therefore our results 

cannot be explained by systematic differences in the data acquisition. Together, our 

design, large sample, methodology, and results provide the direct evidence to 

understand the relationships between subcortical hub pathology and mental disorders.  

Limitations and future work 

The present study has some potential limitations. First, most of our understanding of 

subcortical network in clinical neuroscience has come from Magnetic Resonance 

Imaging (MRI) signal. But subcortical structure is highly heterogeneous and 

composed of up to many small discrete nuclei (Jones, 2012; de Hollander et al., 2015). 

Psychiatric symptoms associated with subcortical dysfunction vary based to the 

location (Salloway and Cummings, 1994). Fine-grained examination of subcortical 

regions has been limited by the spatial resolution of normal MRI. Moreover, the 

general analysis protocols including normalization and spatial smoothing may blur the 

boundaries of multinuclear structures. Future studies may need adopt techniques with 

ultra-high resolution, such as 7T fMRI, to delineate the role of subcortical network in 

psychiatric filed. Second, since the current investigation is cross-sectional, we cannot 

make casual mechanistic inference. One promising approach may need to be 

considered in future work, which is known as normative modeling, could estimate the 

extent about how an individual’s neural features deviate from what is expected given 

his/her age. This longitudinal track may provide the casual explanations. Finally, 
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although we classified different mental disorders by machine learning, and revealed 

the shared and distinct patterns between different patient population, we did not 

decipher the relationship between the overlap/similarity on symptoms and similarity 

on neural patterns.  

Conclusion 

In conclusion, the current results provide the first evidence that time-varying 

functional connectivity within subcortical network can effectively show distinct 

patterns between HC and patients, as well as SZ and OCD, MDD and OCD, SZ and 

BD, with a large sample size and transdiagnostic approach. Importantly, these main 

differences came from the functional connections between basal ganglia and thalamus. 

We are hopeful that our current findings will lead to a refinement to make more 

precise diagnosis in neuropsychiatry.  

 

Data Availability Statement: 

 
All codes are available at: 

https://github.com/psywalkeryanxy/dynamic_FNC_mental_disorders  
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Supplemental materials 

 

 

Figure S1. All components in subcortical network. 

 

 
Figure S2. Composite map of the default mode network (DMN) and cognitive control network 

(CC). 
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Table S1. Demographic and clinical data from all groups. 

Note: BDI, Beck Depression Inventory; BAI, Beck Anxiety Inventory; YMRS, Young Mania Rating Scale; PANSS, Positive and Negative Syndrome Scale.

 Healthy 

comparison 

Bipolar 

disorder 

MDD OCD Schizophrenia   Healthy control vs 

  BD MDD OCD SZ 

N 204 49 98 52 142 F p-value p-values 

Age 31.119±8.320 33.632±10.280 35.561±10.926 27.365±8.964 26.624±6.055 19.270 <0.001 0.072 <0.001 0.005 <0.001 

Age range 17-55 16-58 15-57 12-47 12-58 N/A N/A N/A N/A N/A N/A 

Gender(female/male) 111/93 23/26 64/34 32/20 72/70 1.862 0.116 0.332 0.077 0.373 0.468 

Education 13.930±3.866 10.930±3.460 11.180±3.710 11.060±3.158 11.400±2.921 17.965 <0.001 <0.001 <0.001 <0.001 <0.001 

Disease duration(month) N/A 80.96±92.672 44.54±65.414 50.04±55.613 39.15±44.932 N/A N/A N/A N/A N/A N/A 

BDI N/A 9.58±11.349 19.13±7.022 N/A N/A N/A N/A N/A N/A N/A N/A 

BAI N/A 34.65±13.372 39.18±12.060 N/A N/A N/A N/A N/A N/A N/A N/A 

Y-BOCS (obsessive thoughts) N/A N/A N/A 29.610±8.128 N/A N/A N/A N/A N/A N/A N/A 

Y-BOCS (compulsive behaviors) N/A N/A N/A  N/A N/A N/A N/A N/A N/A N/A 

PANSS N/A N/A N/A N/A 82.14±8.977 N/A N/A N/A N/A N/A N/A 
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Table S2. Difference between healthy controls and patients on fraction of time.   

 

 

  

HC vs. Patients F p-value η2 Corrected p-value 

(FDR, p<0.05) 

State1 4.413 0.036 0.009 0.048 

State2 9.988 0.002 0.020 0.004 

State3 1.357 0.245 0.003 0.245 

State4 17.938 <0.001 0.035 <0.001 
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Table S3. Difference among the four groups of patients on fraction of time. 

 

 

 

HC vs. Patients F p-value η2 Corr

ected 

p-value 

(FDR, 

p<0.05) 

State1 0.817 0.486 0.008 0.48

6 

State2 1.655 0.177 0.016 0.35

4 

State3 0.817 0.485 0.008 0.48

6 

State4 5.963 0.001 0.057 0.00

4 

Post 

hoc 

analy

ses 

for 

state4 

BD vs. MDD 0.787 0.377 0.006 0.37

7 

BD vs. OCD 1.596 0.210 0.018 0.25

2 

BD vs. SZ 9.740 0.002 0.058 0.00

6 

MDD vs. 

OCD 

9.204 0.003 0.063 0.00

6 

MDD vs. SZ 2.604 0.108 0.012 0.16

2 

OCD vs. SZ 13.033 <0.001 0.075 <0.0

01 
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Table S4. Results of dynamic FNC in default mode network 

 

 

 

 

 

 HC vs. 

Patients 

F p-value η2 Corrected p-value 

(FDR, p<0.05) 

HC vs. 

Patients 

Mean dwell 

time 

State1 0.006 0.937 <0.001 0.937 

State2 4.448 0.035 0.009 0.070 

State3 5.033 0.025 0.010 0.070 

State4 0.025 0.875 <0.001 0.937 

Fraction of time State1 0.007 0.932 <0.001 0.932 

State2 4.692 0.031 0.009 0.062 

State3 5.105 0.024 0.010 0.062 

State4 0.019 0.891 <0.001 0.932 

Number of 

transitions 

 0.633 0.426 0.001 - 

Patients 

(BD vs. 

MDD vs. 

OCD vs. 

SZ) 

Mean dwell 

time 

State1 2.703 0.046 0.026 0.150 

State2 1.374 0.251 0.014 0.334 

State3 0.728 0.536 0.007 0.536 

State4 2.323 0.075 0.023 0.150 

Fraction of time State1 2.716 0.045 0.027 0.162 

State2 1.393 0.245 0.014 0.326 

State3 0.702 0.552 0.007 0.552 

State4 2.265 0.081 0.022 0.162 

Number of 

transitions 

 0.962 0.411 0.010 - 
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Table S5. Results of dynamic FNC in cognitive control network. 

Note, no time windows belong to state4, thus there was no statistical results in state 4 within 

cognitive control network. 

 

 

 HC vs. 

Patients 

F p-value η2 Corrected p-value 

(FDR, p<0.05) 

HC vs. 

Patients 

Mean dwell 

time 

State1 1.278 0.259 0.003 0.388 

State2 2.725 0.099 0.005 0.297 

State3 0.052 0.819 <0.001 0.819 

State4 - - - - 

Fraction of time State1 1.296 0.255 0.003 0.382 

State2 2.808 0.094 0.006 0.282 

State3 0.052 0.819 <0.001 0.819 

State4 - - - - 

Number of 

transitions 

 0.097 0.756 <0.001 - 

Patients 

(BD vs. 

MDD vs. 

OCD vs. 

SZ) 

Mean dwell 

time 

State1 0.573 0.633 0.006 0.942 

State2 0.551 0.648 0.006 0.942 

State3 0.131 0.942 0.001 0.942 

State4 - - - - 

Fraction of time State1 0.575 0.632 0.006 0.935 

State2 0.558 0.643 0.006 0.935 

State3 0.142 0.935 0.001 0.935 

State4 - - - - 

Number of 

transitions 

 0.230 0.875 0.002 - 


